Pérdida de masa muscular en el paciente críticamente enfermo: ¿Caquexia, sarcopenia y/o atrofia? Impacto en la respuesta terapéutica y la supervivencia

Sebastián Chapela, Andrés Martinuzzi

Texto completo:

PDF

Resumen

La pérdida de la masa muscular esquelética (PMM) en el paciente críticamente enfermo es la expresión final de eventos fisiopatológicos desencadenados por el trauma y la injuria, la inflamación y la hipercatabolia. La PMM pudiera responder también al aporte insuficiente de energía y nutrientes, lo que acentuaría la depleción de los tejidos magros. De no ser intervenida oportunamente, la PMM puede colocar al enfermo en riesgo de falla ventilatoria, y con ello, intubación y ventilación mecánica, prolongación de la estadía hospitalaria, y el encarecimiento de las prestaciones asistenciales. La PMM puede ser reconocida mediante la exploración funcional, la evaluación antropométrica, y la medición de la fuerza de contracción muscular mediante la dinamometría. Asimismo, el tamaño de las masas musculares se puede reconstruir mediante técnicas imagenológicas como la resonancia magnética nuclear (RMN) y el ultrasonido (US). La determinación del nitrógeno ureico urinario (NUU) permite examinar la intensidad de la hipercatabolia a la vez que trazar los cambios en la repleción tisular tras el inicio de la intervención nutricional. La paliación de la PMM y la repleción tisular suelen conseguirse mediante terapias multimodales que combinan el apoyo nutricional, el uso de nutrientes y fármacos orientados específicamente a la acreción muscular, y la promoción de la rehabilitación y el ejercicio físico. Se han concluido ensayos clínicos prometedores con agonistas de receptores a andrógenos y la grelina, e inhibidores de los factores de transcripción FOX. A medida que un número cada vez mayor de pacientes admitidos en las unidades de cuidados intensivos muestran ya PMM asociada al envejecimiento, se hace imperativo el establecimiento de pautas para el examen del tamaño de la masa muscular esquelética y la calidad de la fuerza de contracción, la cuantificación del estrés metabólico y la hipercatabolia, y la adopción de un programa multimodal efectivo que limite la PMM,  haga posible la rehabilitación del enfermo, y asegure el éxito de la actuación médico-quirúrgica.

Palabras clave

Pérdida de masa muscular; Unidad de Cuidados Intensivos; Paciente críticamente enfermo; Caquexia; Sarcopenia

Referencias

Lacomis D, Zochodne DW, Bird SJ. Critical illness myopathy. Muscle Nerve 2000;23:1785-8.

Friedrich O, Reid MB, Van den Berghe G, Vanhorebeek I, Hermans G, Rich MM; et al. The sick and the weak : Neuropathies/myopathies in the critically ill. Physiol Rev 2015;95:1025-109.

Osler SW. The principles and practice of medicine: Designed for the use of practitioners and students of medicine. Appleton and Company. New York: 1910.

Puthucheary ZA, Rawal J, McPhail M, Connolly B, Ratnayake G, Chan P; et al. Acute skeletal muscle wasting in critical illness. JAMA 2013;310:1591-600.

Puthucheary Z, Montgomery H, Moxham J, Harridge S, Hart N. Structure to function: Muscle failure in critically ill patients. J Physiol 2010;588:4641-8.

Latronico N, Recupero D, Candiani A, Guarneri B, De Maria G, Antonini L; et al. Critical illness myopathy and neuropathy. The Lancet 1996;347(9015):1579-82.

Latronico, Nicola, Elena Peli, and Marco Botteri. Critical illness myopathy and neuropathy. Curr Op Crit Care 2005;11:126-32.

Koch S, Spuler S, Deja M, Bierbrauer J, Dimroth A, Behse F; et al. Critical illness myopathy is frequent: Accompanying neuropathy protracts ICU discharge. J Neurol Neurosurg Psych 2011;82:287-93.

Latronico N, Bolton CF. Critical illness polyneuropathy and myopathy: A major cause of muscle weakness and paralysis. The Lancet Neurology 2011;10:931-41.

Guarneri B, Bertolini G, Latronico N. Long-term outcome in patients with critical illness myopathy or neuropathy: The Italian multicentre CRIMYNE Study. J Neurol Neurosurg Psych 2008; 79:838-41.

Cerri AP, Bellelli G, Mazzone A, Pittella F, Landi F, Zambon A, Annoni G. Sarcopenia and malnutrition in acutely ill hospitalized elderly: Prevalence and outcomes. Clin Nutr 2015;34:745-51.

Weijs PJM, Looijaard WGPM, Dekker IM, Stapel SN, Girbes AR, Oudemansvan Straaten HM, Beishuizen A. Low skeletal muscle area is a risk factor for mortality in mechanically ventilated critically ill patients. Crit Care 2014;18:R12-R12. Disponible en: https://ccforum.biomedcentral.com/articles/10.1186/cc13189. Fecha de última visita: 6 de Diciembre del 2017.

Ali NA, O’Brien Jr JM, Hoffmann SP, Phillips G, Garland A, Finley JC; et al. Acquired weakness, handgrip strength, and mortality in critically ill patients. Am J Respir Crit Care Med 2008;178:261-8.

Hermans G, Van Mechelen H, Clerckx B, Vanhullebusch T, Mesotten D, Wilmer A; et al. Acute outcomes and 1-year mortality of intensive care unit-acquired weakness. A cohort study and propensity-matched analysis. Am J Respir Crit Care Med 2014;190:410-20.

Peng PD, Van Vledder MG, Tsai S, De Jong MC, Makary M, Ng J; et al. Sarcopenia negatively impacts short-term outcomes in patients undergoing hepatic resection for colorectal liver metastasis. Hpb [Oxford] 2011;13:439-46.

Hooijman PE, Beishuizen A, Witt CC, de Waard MC, Girbes AR, Spoelstra-de Man AM; et al. Diaphragm muscle fiber weakness and ubiquitin–proteasome activation in critically ill patients. Am J Resp Crit Care Med 2015;191:1126-38.

Berger D, Bloechlinger S, von Haehling S, Doehner W, Takala J, Z'graggen WJ, Schefold JC. Dysfunction of respiratory muscles in critically ill patients on the intensive care unit. J Cachexia Sarcopenia Muscle 2016;7:403-12.

Tandon P, Ney M, Irwin I, Ma MM, Gramlich L, Bain VG; et al. Severe muscle depletion in patients on the liver transplant wait list: Its prevalence and independent prognostic value. Liver Transpl 2012;18:1209-16.

van Venrooij LM, Verberne HJ, de Vos R, Borgmeijer-Hoelen MM, van Leeuwen PA, de Mol BA. Postoperative loss of skeletal muscle mass, complications and quality of life in patients undergoing cardiac surgery. Nutrition 2012;28:40-5.

Latronico N, Shehu I, Seghelini E. Neuromuscular sequelae of critical illness. Curr Op Crit Care 2005;11:381-90.

Kress JP, Hall JB. ICU-acquired weakness and recovery from critical illness. N Engl J Med 2014;370:1626-35.

Hodgson CL, Udy AA, Bailey M, Barrett J, Bellomo R, Bucknall T; et al. The impact of disability in survivors of critical illness. Intensive Care Med 2017; 43:992-1001.

Lieber RL, Fridén J. Functional and clinical significance of skeletal muscle architecture. Muscle Nerve 2000;23: 1647-66.

Huxley AF. Muscular contraction. J Physiol 1974;243:1-43.

Garrett WE, Best TM. Anatomy, physiology, and mechanics of skeletal muscle. En: Orthopaedic basic science. American Academy of Orthopaedic Surgeons. Rosemont [Illinois]: 1994. pp 89-125.

Zurlo F, Larson K, Bogardus C, Ravussin E. Skeletal muscle metabolism is a major determinant of resting energy expenditure. J Clin Invest 1990;86:1423-7.

Santana Porbén S. Metabolismo tisular de los sustratos. En: Manual de Nutrición enteral y parenteral [Editores: Arenas Moya D, Anaya Prado R]. Segunda Edición. Editorial McGraw-Hill Interamericana. Ciudad México: 2012. Pp 34-45.

Ruderman NB, Berger M. The formation of glutamine and alanine in skeletal muscle. J Biol Chem 1974;249:5500-6.

Chang T, Goldberg AL. The origin of alanine produced in skeletal muscle. J Biol Chem 1978;253:3677-84.

Hasselgren PO, Jagenburg R, Karlström L, Pedersen P, Seeman T. Changes of protein metabolism in liver and skeletal muscle following trauma complicated by sepsis. J Trauma 1984;24:224-8.

Monk DN, Plank LD, Franch-Arcas G, Finn PJ, Streat SJ, Hill GL. Sequential changes in the metabolic response in critically injured patients during the first 25 days after blunt trauma. Ann Surg 1996;223:395-405.

Martinuzzi ALN, Alcántara S, Corbal A, Di Leo ME, Guillot A, Palaoro A; et al. Nitrógeno ureico urinario como indicador del metabolismo proteico en el paciente crítico. RCAN Rev Cubana Aliment Nutr 2011;21:224-35.

Gamrin L, Essen P, Forsberg AM, Hultman E, Wernerman J. A descriptive study of skeletal muscle metabolism in critically ill patients: Free amino acids, energy-rich phosphates, protein, nucleic acids, fat, water, and electrolytes. Crit Care Med 1996;24:575-83.

Chan DL. Nutritional requirements of the critically ill patient. Clin Techn Small Animal Pract 2004;19:1-5.

Price LA, Thombs B, Chen CL, Milner SM. Liver disease in burn injury: evidence from a national sample of 31,338 adult patients. J Burns Wounds 2007;7:e1-e1. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1892842/. Fecha de última visita: 7 de Diciembre del 2017.

Jeschke MG. The hepatic acute phase response to thermal injury. En: Acute Phase Proteins- Regulation and Functions of Acute Phase Proteins. InTech Open. Zagreb [Croacia]: 2011.

Warren GL, Hulderman T, Jensen N, McKinstry M, Mishra M, Luster MI, Simeonova PP. Physiological role of tumor necrosis factor α in traumatic muscle injury. FASEB J 2002;16:1630-2.

Maynard ND, Mason RC, Bihari DJ, Smithies MN, Beale R, Dalton RN. Liver function and splanchnic ischemia in critically III patients. Chest 1997;111:180-7.

Reid C. Frequency of under‐ and overfeeding in mechanically ventilated ICU patients: Causes and possible consequences. J Human Nutr Diet 2006;19:13-22.

Klein CJ, Stanek GS, Wiles III CE. Overfeeding macronutrients to critically ill adults: Metabolic complications. J Am Diet Assoc 1998;98:795-806.

Schwarz JM, Chioléro R, Revelly JP, Cayeux C, Schneiter P, Jéquier E; et al. Effects of enteral carbohydrates on de novo lipogenesis in critically ill patients. Am J Clin Nutr 2000;72:940-5.

Humphreys J, de la Maza P, Hirsch S, Barrera G, Gattas V, Bunout D. Muscle strength as a predictor of loss of functional status in hospitalized patients. Nutrition 2002;18:616-20.

Norman K, Stobäus N, Gonzalez MC, Schulzke JD, Pirlich M. Hand grip strength: outcome predictor and marker of nutritional status. Clin Nutr 2011;30:135-42.

De Jonghe BMB-G, Sylvie MD, Durand M-C, Malissin I, Rodrigues P, Cerf C, Outin H, Sharshar T; for the Groupe de Reflexion et d'Etude des Neuromyopathies. Respiratory weakness is associated with limb weakness and delayed weaning in critical illness. Crit Care Med 2007;39:2007-15.

Doorduin J, van Hees HW, van der Hoeven JG, Heunks LM. Monitoring of the respiratory muscles in the critically ill. Am J Resp Crit Care Med 2013;187:20-7.

Heymsfield SB, Adamek M, Gonzalez MC, Jia G, Thomas DM. Assessing skeletal muscle mass: Historical overview and state of the art. J Cachexia Sarcopenia Muscle 2014;5:9-18.

Savalle M, Gillaizeau F, Maruani G, Puymirat E, Bellenfant F, Houillier P; et al. Assessment of body cell mass at bedside in critically ill patients. Am J Physiol Endocrinol Metab 2012;303: E389-E396.

Powell-Tuck J, Hennessy EM. A comparison of mid upper arm circumference, body mass index and weight loss as indices of undernutrition in acutely hospitalized patients. Clin Nutr 2003;22:307-12.

Gruther W, Benesch T, Zorn C, Paternostro-Sluga T, Quittan M, Fialka-Moser V; et al. Muscle wasting in intensive care patients: Ultrasound observation of the M. quadriceps femoris muscle layer. J Rehab Med 2008;40:185-9.

Paris MT, Mourtzakis M, Day A, Leung R, Watharkar S, Kozar R; et al. Validation of bedside ultrasound of muscle layer thickness of the quadriceps in the critically ill patient (VALIDUM Study): A prospective multicenter study. JPEN J Parenter Enter Nutr 2017;41:171-80.

Bulcke JA, Termote JL, Palmers Y, Crolla D. Computed tomography of the human skeletal muscular system. Neuroradiology. 1979;17:127-36.

Haggmark T, Jansson E, Svane B. Cross-sectional area of the thigh muscle in man measured by computed tomography. Scand J Clin Lab Invest 1978;38:355-60.

Selberg O, Burchert W, Graubner G, Wenner C, Ehrenheim C, Muller MJ. Determination of anatomical skeletal muscle mass by whole body nuclear magnetic resonance. Basic Life Sci 1993;60:95-7.

Kim J, Wang Z, Heymsfield SB, Baumgartner RN, Gallagher D. Total-body skeletal muscle mass: Estimation by a new dual-energy X-ray absorptiometry method. Am J Clin Nutr 2002;76:378-83.

Nuñez C, Gallagher D, Grammes J, Baumgartner RN, Ross R, Wang Z; et al. Bioimpedance analysis: potential for measuring lower limb skeletal muscle mass. JPEN J Parenter Enter Nutr 1999; 23:96-103.

Faisy C, Rabbat A, Kouchakji B, Laaban JP. Bioelectrical impedance analysis in estimating nutritional status and outcome of patients with chronic obstructive pulmonary disease and acute respiratory failure. Intensive Care Med 2000;26:518-25.

Lee YH, Lee J-D, Kang DR, Hong J, Lee J. Bioelectrical impedance analysis values as markers to predict severity in critically ill patients. J Crit Care 2017;40:103-7.

Wang ZM, Gallagher D, Nelson ME, Matthews DE, Heymsfield SB. Total-body skeletal muscle mass: Evaluation of 24-h urinary creatinine excretion by computerized axial tomography. Am J Clin Nutr 1996;63:863-9.

Bacallao Méndez R, Santana Porbén S. La excreción urinaria de creatinina en los ejercicios de reconstrucción corporal y evaluación nutricional. RCAN Rev Cubana Aliment Nutr 2015;25(1 Supl 1):S1-S141.

Wang Z, Deurenberg P, Matthews DE, Heymsfield SB. Urinary 3-methylhistidine excretion: Association with total body skeletal muscle mass by computerized axial tomography. JPEN J Parenter Enteral Nutr 1998;22:82-6.

Virgili F, Maiani G, Zahoor ZH, Ciarapica D, Raguzzini A, Ferro-Luzzi A. Relationship between fat-free mass and urinary excretion of creatinine and 3-methylhistidine in adult humans. J Appl Physiol 1994;76:1946-50.

Lundholm K, Bennegård K, Eden E, Svaninger G, Emery PW, Rennie MJ. Efflux of 3-methylhistidine from the leg in cancer patients who experience weight loss. Cancer Res 1982;42:4807-11.

Neuhauser M, Bergstrom J, Chao L, Holmstrom J, Nordlund L, Vinnars E; et al. Urinary excretion of 3-methylhistidine as an index of muscle protein catabolism in postoperative trauma: The effect of parenteral nutrition. Metabolism 1980;29:1206-13.

Puthucheary Z, Harridge S, Hart N. Skeletal muscle dysfunction in critical care: Wasting, weakness, and rehabilitation strategies. Crit Care Med 2010;38(10 Suppl):S676-S682.

Fearon K, Strasser F, Anker SD, Bosaeus I, Bruera E, Fainsinger RL; et al. Definition and classification of cancer cachexia: An international consensus. The Lancet Oncology 2011;12:489-95.

Tan BH, Fearon KC. Cachexia: Prevalence and impact in medicine. Curr Op Clin Nutr Metab Care 2008;11:400-7.

Kalantar-Zadeh K, Rhee C, Sim JJ, Stenvinkel P, Anker SD, Kovesdy CP. Why cachexia kills: Examining the causality of poor outcomes in wasting conditions. J Cachexia Sarcopenia Muscle 2013;4:89-94.

Muscaritoli M, Anker SD, Argiles J, Aversa Z, Bauer JM, Biolo G; et al. Consensus definition of sarcopenia, cachexia and pre-cachexia: Joint document elaborated by Special Interest Groups (SIG) “Cachexia-anorexia in chronic wasting diseases” and “Nutrition in geriatrics”. Clin Nutr 2010;29:154-9.

Kotler DP. Cachexia. Ann Intern Med 2000;133:622-34.

Schefold JC, Bierbrauer J, Weber-Carstens S. Intensive care unit-acquired weakness (ICUAW) and muscle wasting in critically ill patients with severe sepsis and septic shock. J Cachexia Sarcopenia Muscle 2010;1:147-57.

Reid CL, Campbell IT, Little RA. Muscle wasting and energy balance in critical illness. Clin Nutr 2004;23:273-280.

Drover JW, Cahill NE, Kutsogiannis J, Pagliarello G, Wischmeyer P, Wang M; et al. Nutrition therapy for the critically ill surgical patient: We need to do better! JPEN J Parenter Enter Nutr 2010;34: 644-52.

Cahill NE, Murch L, Cook D, Heyland DK; for the Canadian Critical Care Trials Group. Barriers to feeding critically ill patients: A multicenter survey of critical care nurses. J Crit Care 2012;27:727-34.

Derde S, Hermans G, Derese I, Güiza F, Hedström Y, Wouters PJ; et al. Muscle atrophy and preferential loss of myosin in prolonged critically ill patients. Crit Care Med 2012;40:79-89.

Chambers MA, Moylan JS, Reid MB. Physical inactivity and muscle weakness in the critically ill. Crit Care Med 2009; 37(10 Suppl):S337-S346.

Rosenberg IH. Summary comments: epidemiological and methodological problems in determining nutritional status of older persons. Am J Clin Nutr 1989;50:1231-3.

Rosenberg IH. Sarcopenia: origins and clinical relevance. J Nutr 1997;127(5 Suppl):S990-S991.

Somoza EMZ, Alvarez VF, Porbén SS. Sobre las interrelaciones entre la sarcopenia, envejecimiento y nutrición. RCAN Rev Cubana Aliment Nutr 2018; 28:152-76.

Zayas Somoza E, Fundora Alvarez V. Sobre las interrelaciones entre la nutrición y el envejecimiento. RCAN Rev Cubana Aliment Nutr 2017;27: 394-429.

Griffiths RD. Muscle mass, survival, and the elderly ICU patient. Nutrition 1996; 12:456-8.

Hanna JS. Sarcopenia and critical illness: A deadly combination in the elderly. JPEN J Parenter Enter Nutr 2015;39: 273-81.

Wischmeyer PE, San-Millan I. Winning the war against ICU-acquired weakness: New innovations in nutrition and exercise physiology. Crit Care 2015; 19(3 Suppl):S6-S6. Disponible en: https://ccforum.biomedcentral.com/articles/10.1186/cc14724. Fecha de última visita: 7 de Diciembre del 2017.

Powell-Tuck J. Nutritional interventions in critical illness. Proc Nutr Soc 2007;66: 16-24.

Oshima T, Deutz NE, Doig G, Wischmeyer PE, Pichard C. Protein-energy nutrition in the ICU is the power couple: A hypothesis forming analysis. Clin Nutr 2016;35:968-74.

Weijs PJ, Cynober L, DeLegge M, Kreymann G, Wernerman J, Wolfe RR. Proteins and amino acids are fundamental to optimal nutrition support in critically ill patients. Crit Care 2014; 18(6):591-591. Disponible en: https://ccforum.biomedcentral.com/articles/10.1186/s13054-014-0591-0. Fecha de última visita: 8 de Diciembre del 2017.

Hoffer JL, Bistrian BR. Appropriate protein provision in critical illness: A systematic and narrative review. Am J Clin Nutr 2012;96:591-600.

Grupo de Trabajo de Abordaje Nutricional en el Paciente Crítico. Asociación Argentina de Nutrición Enteral y Parenteral. Comité de Soporte Nutricional y Metabolismo. Sociedad Argentina de Terapia Intensiva. Soporte nutricional en el paciente adulto críticamente enfermo. Un consenso de práctica clínica. RCAN Rev Cubana Aliment Nutr 2016;26(1 Supl 1):S1-S82.

Hadley JS, Hinds CJ. Anabolic strategies in critical illness. Curr Op Pharmacol 2002;2:700-7.

Jeschke MG, Herndon DN, Ebener C, Barrow RE, Jauch KW. Nutritional intervention high in vitamins, protein, amino acids, and ω3 fatty acids improves protein metabolism during the hypermetabolic state after thermal injury. Arch Surg 2001;136:1301-6.

Martinuzzi ALN, Ferraresi E. Inmunonutrición y trauma. RCAN Rev Cubana Aliment Nutr 2011;21:129-46.

Marik PE, Zaloga GP. Immunonutrition in critically ill patients: A systematic review and analysis of the literature. Intensive Care Med 2008;34:1980-90.

Nissen SL, Abumrad NN. Nutritional role of the leucine metabolite β-hydroxy β-methylbutyrate (HMB). J Nutr Biochem 1997;8:300-11.

Nissen S, Sharp RL, Panton L, Vukovich M, Trappe S, Fuller Jr JC. β-hydroxy-β-methylbutyrate (HMB) supplementation in humans is safe and may decrease cardiovascular risk factors. J Nutr 2000;130:1937-45.

Hsieh L, Chien S, Huang M, Tseng H, Chang C. Anti-inflammatory and anticatabolic effects of short-term beta-hydroxy-beta-methylbutyrate supplementation on chronic obstructive pulmonary disease patients in intensive care unit. Asia Pac J Clin Nutr 2006; 15:544-50.

Rahman A, Wilund K, Fitschen PJ, Jeejeebhoy K, Agarwala R, Drover JW, Mourtzakis M. Elderly persons with ICU-acquired weakness: The potential role for β-hydroxy-β-methylbutyrate (HMB) supplementation? JPEN J Parenter Enter Nutr 2014;38:567-75.

Kuhls DA, Rathmacher JA, Musngi MD, Frisch DA, Nielson J, Barber A; et al. β-Hydroxy-β-methylbutyrate supplementation in critically ill trauma patients. J Trauma Acute Care Surg 2007;62:125-32.

Ziegler TR. Parenteral nutrition in the critically ill patient. N Engl J Med 2009; 361:1088-97.

Calder PC, Jensen GL, Koletzko BV, Singer P, Wanten GJ. Lipid emulsions in parenteral nutrition of intensive care patients: Current thinking and future directions. Intensive Care Med 2010; 36:735-49.

Grau T, Bonet A, Miñambres E, Piñeiro L, Irles JA, Robles A; et al. The effect of L-alanyl-L-glutamine dipeptide supplemented total parenteral nutrition on infectious morbidity and insulin sensitivity in critically ill patients. Crit Care Med 2011;39:1263-8.

Palmer TA, Griffiths RD, Jones C. Effect of parenteral L-glutamine on muscle in the very severely ill. Nutrition 1996;12:316-20.

Huang YC, Yen CE, Cheng CH, Jih KS, Kan MN. Nutritional status of mechanically ventilated critically ill patients: Comparison of different types of nutritional support. Clin Nutr 2000; 19:101-7.

Andrade Hernández MB, Chaug Solórzano MA, Andino Rodríguez FX, Rodríguez Veintimilla D. Sobre las propiedades y los usos de la glutamina en la citorreducción tumoral. RCAN Rev Cubana Aliment Nutr 2017;27:430-64.

García Arévalo L, Santana Porbén S. Nitrógeno ureico urinario estimado del índice de excreción urea-creatinina construido para una muestra única de orina. RCAN Rev Cubana Aliment 2015;25:314-26.

Schweickert WD, Pohlman MC, Pohlman AS, Nigos C, Pawlik AJ, Esbrook CL; et al. Early physical and occupational therapy in mechanically ventilated, critically ill patients: A randomised controlled trial. The Lancet 2009;373(9678):1874-82.

Morris PE. Moving our critically ill patients: Mobility barriers and benefits. Crit Care Clin 2007;23:1-20.

Kayambu G, Boots R, Paratz J. Physical therapy for the critically ill in the ICU: A systematic review and meta-analysis. Crit Care Med 2013;41:1543-54.

Burtin C, Clerckx B, Robbeets C, Ferdinande P, Langer D, Troosters T; et al. Early exercise in critically ill patients enhances short-term functional recovery. Crit Care Med 2009;37:2499-505.

Denehy L, Lanphere J, Needham DM. Ten reasons why ICU patients should be mobilized early. Intensive Care Med 2017;43:86-90.

Nydahl P, Sricharoenchai T, Chandra S, Kundt FS, Huang M, Fischill M, Needham DM. Safety of patient mobilization and rehabilitation in the intensive care unit. Systematic review with meta-analysis. Ann Am Thorac Soc 2017;14:766-77.

Kamdar BB, Combs MP, Colantuoni E, King LM, Niessen T, Neufeld KJ; et al. The association of sleep quality, delirium, and sedation status with daily participation in physical therapy in the ICU. Critical Care 2016;20:261-261.Disponible en: https://ccforum.biomedcentral.com/articles/10.1186/s13054-016-1433-z. Fecha de última visita: 18 de Diciembre del 2017.

Baldwin CE, Paratz JD, Bersten AD. Muscle strength assessment in critically ill patients with handheld dynamometry: an investigation of reliability, minimal detectable change, and time to peak force generation. J Crit Care 2013;28:77-86.

Needham DM, Truong AD, Fan E. Technology to enhance physical rehabilitation of critically ill patients. Crit Care Med 2009;37(10 Suppl):S436-S441.

Maffiuletti NA. Physiological and methodological considerations for the use of neuromuscular electrical stimulation. Eur J Appl Physiol 2010; 110:223-34.

Maffiuletti NA, Roig M, Karatzanos E, Nanas S. Neuromuscular electrical stimulation for preventing skeletal-muscle weakness and wasting in critically ill patients: A systematic review. BMC Med 2013;11:137-137. Disponible en: https://bmcmedicine.biomedcentral.com/articles/10.1186/1741-7015-11-137. Fecha de última visita: 16 de Diciembre del 2017.

Rich MM, Teener JW, Raps EC, Schotland DL, Bird SJ. Muscle is electrically inexcitable in acute quadriplegic myopathy. Neurology 1996;46:731-6.

Morley JE. Pharmacologic options for the treatment of sarcopenia. Calc Tiss Int 2016;98:319-33.

Stanojcic M, Finnerty CC, Jeschke MG. Anabolic and anticatabolic agents in critical care. Curr Op Crit Care 2016; 22:325-31.

Berenstein EG, Ortiz Z. Megestrol acetate for the treatment of anorexia-cachexia syndrome. CD004310-CD004310: 2005. Disponible en: https://www.cochranelibrary.com/cdsr/doi/10.1002/14651858.CD004310.pub2/abstract. Fecha de última visita: 15 de Diciembre del 2017.

Sakurai Y, Aarsland A, Herndon DN, Chinkes DL, Pierre E, Nguyen TT; et al. Stimulation of muscle protein synthesis by long-term insulin infusion in severely burned patients. Ann Surg 1995;222: 283-94.

Diaz EC, Herndon DN, Porter C, Sidossis LS, Suman OE, Børsheim E. Effects of pharmacological interventions on muscle protein synthesis and breakdown in recovery from burns. Burns 2015;41:649-57.

Hammarqvist F, Strömberg C, Vinnars E, Wernerman J. Biosynthetic human growth hormone preserves both muscle protein synthesis and the decrease in muscle-free glutamine, and improves whole-body nitrogen economy after operation. Ann Surg 1992;216:184-91.

Gamrin L, Essén P, Hultman E, McNurlan MA, Garlick PJ, Wernerman J. Protein-sparing effect in skeletal muscle of growth hormone treatment in critically ill patients. Ann Surg 2000;231:577-86.

Pichard C, Kyle U, Chevrolet JC, Jolliet P, Slosman D, Mensi N; et al. Lack of effects of recombinant growth hormone on muscle function in patients requiring prolonged mechanical ventilation: A prospective, randomized, controlled study. Crit Care Med 1996;24:403-13.

Takala J, Ruokonen E, Webster NR, Nielsen MS, Zandstra DF, Vundelinckx G, Hinds CJ. Increased mortality associated with growth hormone treatment in critically ill adults. N Engl J Med 1999;341:785-92.

Barnoud D. Increased mortality associated with growth hormone treatment in critically ill adults. Nutr Clin Métab [Paris: France] 2000;14: 169-70.

DeLuca HF. The vitamin D system in the regulation of calcium and phosphorus metabolism. Nutr Rev 1979;37:161-93.

Lips P, Wiersinga A, Van Ginkel FC, Jongen MJM, Netelenbos JC, Hackeng WHL; et al. The effect of vitamin D supplementation on vitamin D status and parathyroid function in elderly subjects. J Clin Endocrinol Metab 1988;67:644-50.

Wagatsuma A, Sakuma K. Vitamin D signaling in myogenesis: Potential for treatment of sarcopenia. Bio Med Res Int 2014. Disponible en: https://www.hindawi.com/journals/bmri/2014/121254/abs/. Fecha de última visita: 15 de Diciembre del 2017.

Rolland Y, Dupuy C, van Kan GA Van, Gillette S, Vellas B. Treatment strategies for sarcopenia and frailty. Med Clin N Am 2011;95:427-38.

Bikle DD. Vitamin D metabolism, mechanism of action, and clinical applications. Chem Biol 2014;21:319-29.

Langlois PL, Szwec C, D'Aragon F, Heyland DK, Manzanares W. Vitamin D supplementation in the critically ill: A systematic review and meta-analysis. Clin Nutr 2018;37:1238-46.

Reid MB, Li YP. Cytokines and oxidative signalling in skeletal muscle. Acta Physiol Scand 2001;171:225-32.

Cesari M, Pahor M, Bartali B, Cherubini A, Penninx BWJH, Williams GR; et al. Antioxidants and physical performance in elderly persons: The Invecchiare in Chianti (InCHIANTI) Study. Am J Clin Nutr 2004;79:289-94.

Meydani M, Evans WJ, Handelman G, Biddle L, Fielding RA, Meydani SN; et al. Protective effect of vitamin E on exercise-induced oxidative damage in young and older adults. Am J Physiol Regulat Integrat Comparat Physiol 1993;264:R992-R998.

Molfino A, Amabile MI, Rossi Fanelli F, Muscaritoli M. Novel therapeutic options for cachexia and sarcopenia. Expert Op Biol Ther 2016; 16:1239-44.

Lee D, Goldberg AL. SIRT1 protein, by blocking the activities of transcription factors FoxO1 and FoxO3, inhibits muscle atrophy and promotes muscle growth. J Biol Chem 2013;288:30515-26.

Dalton JT, Taylor RP, Mohler ML, Steiner MS. Selective androgen receptor modulators for the prevention and treatment of muscle wasting associated with cancer. Curr Op Support Palliat Care 2013;7:345-51.

Kojima M, Hosoda H, Date Y, Nakazato M, Matsuo H, Kangawa K. Ghrelin is a growth-hormone-releasing acylated peptide from stomach. Nature 1999;402(6762):656.

Gualillo O, Lago F, Gómez-Reino J, Casanueva FF, Dieguez C. Ghrelin, a widespread hormone: Insights into molecular and cellular regulation of its expression and mechanism of action. FEBS Lett 2003;552:105-9.

Anker MS, Von Haehling S, Springer J, Banach M, Anker SD. Highlights of the mechanistic and therapeutic cachexia and sarcopenia research 2010 to 2012 and their relevance for cardiology. Int J Cardiol 2013;162:73-6.

Enlaces refback

  • No hay ningún enlace refback.