Sobre la participación del gen Per2 en el metabolismo humano

Guadalupe Soto Rodríguez, Celso Enrique Cortés Romero, Tania Bilbao Reboredo, Marcela Vélez Pliego, Jorge Cebada Ruiz, Jesús Adán González Ortega, Cecilia Barrios Espinosa, Victor Manuel Blanco-Álvarez, Bertha Alicia León-Chávez

Texto completo:

PDF

Resumen

La actividad humana se realiza de manera preferente en presencia de la luz solar. La vida de las personas y las colectividades se han organizado alrededor de un ciclo de aproximadamente 24 horas. Estos ciclos (léase también ritmos) circadianos se generan mediante un reloj central que se localiza en el núcleo supraquiasmático del hipotálamo anterior. La actividad de este reloj central afecta la expresión de varios genes. Los procesos metabólicos están influenciados también por este reloj biológico central, de tal forma que la disrupción del mismo puede asociarse con un incremento en el riesgo de padecer exceso de peso y obesidad, Diabetes tipo 2, hipertensión arterial y dislipidemias proaterogénicas (entre otras manifestaciones del Síndrome metabólico). El gen Per2 (del inglés Period Circadian Regulator 2, por “Regulador 2 del Período Circadiano”) es un componente esencial de este reloj central, y se expresa en casi todos los tejidos de la economía, por lo que está implicado en la regulación de las actividades neurobiológicas y del eje hipotálamo-hipófisis-adrenal. A su vez, el gen Per2 es regulado por el neuropéptido Y (NPY), los glucocorticoides y la grelina. La proteína Per2 se expresa de forma diferente en las áreas neuroendocrinas que participan en las emociones, la respuesta conductual y mental al estrés, y los estados emocionales y motivacionales como la amígdala y el hipocampo. Por estas (y otras) razones se ha sugerido que el gen Per2 intervenga en las conductas de búsqueda y gratificación que subyacen en el abuso de drogas, la regulación de la ingestión de alimentos, y el aprendizaje y la memoria. Los estados depresivos, el jet-lag (retraso horario en español) en los viajeros transcontinentales, la iluminación artifical y la nocturnidad pueden alterar la actividad del gen Per2, y de esta manera, contribuir independientemente a la desregulación de la conducta alimentaria, la ganancia excesiva de peso, la obesidad abdominal, la insulinorresistencia, la inflamación y el estrés oxidativo. La reeducación del sujeto obeso en la adherencia a patrones diurnos de actividad sería entonces una de las recomendaciones para la inducción de la reducción deseada del exceso de peso y la disminución del riesgo cardiovascular.

Palabras clave

Gen Per2; Ciclo circadiano; Obesidad; Hipotálamo; Fotoperíodo.

Referencias

De Mairan M. Observation botanique. Histoire de l’Academie Royale de Sciences, Paris. 1729. Pp 35-36.

Schwartz WJ, Daan S. Origins: A brief account of the ancestry of circadian biology. En: Biological timekeeping: Clocks, rhythms and behaviour [Editor: Kumar V]. Volume 1. Springer India. New Delhi: 2017.

Pittendrigh CS. Circadian rhythms and the circadian organization of living systems. Cold Spring Harbor Symp Quant Biol 1960;25:159-84.

Klein DC, Moore RY, Reppert SM. Suprachiasmatic nucleus: The mind´s clock. Oxford University Press. New York: 1991.

Inouye SIT, Shibata S. Neurochemical organization of circadian rhythm in the suprachiasmatic nucleus. Neurosci Res 1994;20:109-30.

Münch M, Bromundt V. Light and chronobiology: Implications for health and disease. Dialogues Clin Neurosci 2012;14:448-53.

Duffy JF, Czeisler CA. Effect of Light on Human Circadian Physiology. Sleep Medicine Clinics. 2009;4(2):165–77. Disponible en: http://doi:10.1016/j.jsmc.2009.01.004. Fecha de última visita: 21 de Febrero del 2021.

Shimizu I, Yoshida Y, Minamino T. A role for circadian clock in metabolic disease. Hypertens Res 2016;39(7):483-91. Disponible en: http://dx.doi.org/10.1038/hr.2016.12. Fecha de última visita: 21 de Febrero del 2021.

Garaulet Aza M, Gómez Abellán P. Clock genes. Circadian rhythms and predisposition to obesity. An Real Acad Nac Farm 2016;82:44-54. Disponible en: http://analesranf.com/index.php/aranf/article/view/1767/1735. Fecha de última visita: 21 de Febrero del 2021.

Garaulet M. Chronobiology and obesity [Editores: Garaulet M, Ordovás JM]. Springer New York. New York NY: 2013. Disponible en: http://link.springer.com/10.1007/978-1-4614-5082-5. Fecha de última visita: 21 de Febrero del 2021.

Saini R, Jaskolski M, Davis SJ. Circadian oscillator proteins across the kingdoms of life: structural aspects. BMC Biology 2019;17:13. Disponible en: https://doi.org/10.1186/s12915-018-0623-3. Fecha de última visita: 21 de Febrero del 2021.

Partch CL, Green CB, Takahashi JS. Molecular architecture of the mammalian circadian clock. Trends Cell Biol 2014;24(2):90-9. Disponible en: http://dx.doi.org/10.1016/j.tcb.2013.07.002. Fecha de última visita: 21 de Febrero del 2021.

Huang N, Chelliah Y, Shan Y, Taylor CA, Yoo SH, Partch C, Green CB, Zhang H, Takahashi JS. Crystal structure of the heterodimeric CLOCK:BMAL1 transcriptional activator complex. Science 2012;337:189-94.

Van der Horst GT, Muijtjens M, Kobayashi K, Takano R, Kanno S, Takao M; et al. Mammalian Cry1 and Cry2 are essential for maintenance of circadian rhythms. Nature 1999;398:627-30.

Kume K, Zylka MJ, Sriram S, Shearman LP, Weaver DR, Jin X; et al. mCRY1 and mCRY2 are essential components of the negative limb of the circadian clock feedback loop. Cell 1999;98:193-205.

Preitner N, Damiola F, Lopez-Molina L, Zakany J, Duboule D, Albrecht U, Schibler U. The orphan nuclear receptor REV-ERBα controls circadian transcription within the positive limb of the mammalian circadian oscillator. Cell 2002;110:251-60.

Triqueneaux G, Thenot S, Kakizawa T, Antoch MP, Safi R, Takahashi JS, Delaunay F, Laudet V. The orphan receptor Rev-erba gene is a target of the circadian clock pacemaker. J Mol Endocrinol 2004;33:585-608.

Ripperger JA, Albrecht U. The circadian clock component PERIOD2: From molecular to cerebral functions. Prog Brain Res 2012;199:233-45.

Konopka RJ, Benzer S. Clock mutants of Drosophila melanogaster. Proc Natl Acad Sci USA 1971;68:2112-6.

Sun ZS, Albrecht U, Zhuchenko O, Bailey J, Eichele G, Lee CC. RIGUI, a putative mammalian ortholog of the Drosophila period gene. Cell 1997;90: 1003-11.

Albrecht U, Sun Z, Eichele G, Lee C. A differential response of two putative mammalian circadian regulators, mper1 and mper2, to light. Cell 1997;91:1055-64.

Shearman LP, Zylka MJ, Weaver DR, Kolakowski LF, Reppert SM. Two period homologs: Circadian expression and photic regulation in the suprachiasmatic nuclei. Neuron 1997;19:1261-9.

Zheng BH, Larkin DW, Albrecht U, Sun ZS, Sage M, Eichele G, Lee CC, Bradley A. The mPer2 gene encodes a functional component of the mammalian circadian clock. Nature 1999;400:169-73.

Sujino M, Nagano M, Fujioka A, Shigeyoshi Y, Inouye S. Temporal profile of circadian clock gene expression in a transplanted suprachiasmatic nucleus and peripheral tissues. Eur J Neurosci 2007;26:2731-8.

Albrecht U, Bordon A, Schmutz I, Ripperger J. The multiple facets of Per2. Cold Spring Harb Symp Quant Biol 2007;72:95-104.

Buhr ED, Takahashi JS. Molecular components of the mammalian circadian clock. En: Circadian Clocks. Handbook of Experimental Pharmacology [Editores: Kramer A., Merrow M]. Volumen 217. Springer. Berlin [Heidelberg]: 2013. Disponible en: https://doi.org/10.1007/978-3-642-25950-0_1. Fecha de última visita: 22 de Febrero del 2021.

Cruciani F, Trombetta B, Labuda D, Modiano D, Torroni A, Costa R, Scozzari R. Genetic diversity patterns at the human clock gene period 2 are suggestive of population-specific positive selection. Eur J Hum Genet 2008;16:1526-34. Disponible en: https://doi.org/10.1038/ejhg.2008.105. Fecha de última visita: 22 de Febrero del 2021.

Hampp G, Albrecht U. The circadian clock and moodrelated behavior. Commun Integr Biol 2008;1:1-3.

Amir S, Lamont EW, Robinson B, Stewart J. A circadian rhythm in the expression of PERIOD2 protein reveals a novel SCN-controlled oscillator in the oval nucleus of the bed nucleus of the stria terminalis. J Neurosci 2004:24: 781-90.

Lamont EW, Robinson B, Stewart J, Amir S. The central and basolateral nuclei of the amygdala exhibit opposite diurnal rhythms of expression of the clock protein Period2. Proc Natl Acad Sci USA 2005;102(11):4180-4. Disponible en: http://www.ncbi.nlm.nih.gov/pubmed/15746242. Fecha de última visita: 22 de Febrero del 2021.

Amir S, Stewart J. Behavioral and hormonal regulation of expression of the clock protein, PER2, in the central extended amygdala. Prog Neuro-Psychopharmacology Biol Psychiatry 2009;33(8):1321-8. Disponible en: http://dx.doi.org/10.1016/j.pnpbp.2009.04.003. Fecha de última visita: 22 de Febrero del 2021.

Amir S, Stewart J. Motivational modulation of rhythms of the expression of the clock protein PER2 in the limbic forebrain. Biol Psychiatry 2009;65(10): 829-34. Disponible en: http://dx.doi.org/10.1016/j.biopsych.2008.12.019. Fecha de última visita: 22 de Febrero del 2021.

Kim M, de la Peña JB, Cheong JH, Kim HJ. Neurobiological functions of the period circadian clock 2 gene, per2. Biomol Ther 2018;26:358-67.

Hampp G, Ripperger JA, Houben T, Schmutz I, Blex C, Perreau-Lenz S: et al. Regulation of monoamine oxidase A by circadian-clock components implies clock influence on mood. Curr Biol 2008;18:678-83.

Bussi IL, Levín G, Golombek DA, Agostino PV. Involvement of dopamine signaling in the circadian modulation of interval timing. Eur J Neurosci 2014;40: 2299-310.

Agostino P, Cheng R. Contributions of dopaminergic signaling to timing accuracy and precision. Curr Opin Behav Sci 2016;8:153-60.

Shumay E, Fowler JS, Wang G-J, Logan J, Alia-Klein N, Goldstein RZ; et al. Repeat variation in the human PER2 gene as a new genetic marker associated with cocaine addiction and brain dopamine D2 receptor availability. Transl Psychiatry 2012;2:e86. Disponible en: http://www.ncbi.nlm.nih.gov/pubmed/22832851. Fecha de última visita: 23 de Febrero del 2021.

Zhu L, Yu J, Zhang W, Xie B, Zhu Y. Research progress on the central mechanism underlying regulation of visceral biological rhythm by Per2 [Review]. Mol Med Rep 2014;10(5):2241-8. Disponible en: http://www.ncbi.nlm.nih.gov/pubmed/25216061. Fecha de última visita: 22 de Febrero del 2021.

Araújo Pereira P, Alvim-Soares A, Aparecida Camargos Bicalho M, Nunes de Moraes E, Malloy-Diniz L, Jardim de Paula J; et al. Lack of association between genetic polymorphism of circadian genes (PER2, PER3, CLOCK and OX2R) with late onset depression and Alzheimer’s disease in a sample of a Brazilian population. Curr Alzheimer Res 2016;13:1397-406.

Cermakian N, Lamont EW, Boudreau P, Boivin DB. Circadian clock gene expression in brain regions of Alzheimer’s disease patients and control subjects. J Biol Rhythms 2011;26:160-70.

Breen DP, Vuono R, Nawarathna U, Fisher K, Shneerson JM, Reddy AB, et al. Sleep and circadian rhythm regulation in early Parkinson disease. JAMA Neurol 2014;71:589-95.

Kudo T, Loh DH, Truong D, Wu Y, Colwell CS. Circadian dysfunction in a mouse model of Parkinson’s disease. Exp Neurol 2011;232(1):66–75. Disponible en: http://www.ncbi.nlm.nih.gov/pubmed/21864527. Fecha de última visita: 23 de Febrero del 2021.

Kudo T, Schroeder A, Loh DH, Kuljis D, Jordan MC, Roos KP: et al. Dysfunctions in circadian behavior and physiology in mouse models of Huntington’s disease. Exp Neurol 2011; 228(1):80-90. Disponible en: http://www.ncbi.nlm.nih.gov/pubmed/21184755. Fecha de última visita: 23 de Febrero del 2021.

Yelamanchili SV, Pendyala G, Brunk I, Darna M, Albrecht U, Ahnert-Hilger G. Differential sorting of the vesicular glutamate transporter 1 into a defined vesicular pool is regulated by light signaling involving the clock gene Period2. J Biol Chem 2006;281(23): 15671-9. Disponible en: http://www.ncbi.nlm.nih.gov/pubmed/16595674. Fecha de última visita: 23 de Febrero del 2021.

Verwey M, Khoja Z, Stewart J, Amir S. Differential regulation of the expression of Period2 protein in the limbic forebrain and dorsomedial hypothalamus by daily limited access to highly palatable food in food-deprived and free-fed rats. Neurosci 2007;147:277-85.

Mistlberger RE. Circadian food-anticipatory activity: Formal models and physiological mechanisms. Neurosci Biobehav Rev 1994;18:171-95.

Feillet CA, Ripperger JA, Magnone MC, Dulloo A, Albrecht U. Challet E. Lack of food anticipation in Per2 mutant mice. Curr Biol 2006;16:2016-22.

Sherman H, Genzer Y, Cohen R, Chapnik N, Madar Z, Froy O. Timed high-fat diet resets circadian metabolism and prevents obesity. FASEB J 2012; 26(8):3493-502. Disponible en: http://www.ncbi.nlm.nih.gov/pubmed/22593546. Fecha de última visita: 23 de Febrero del 2021.

Segall LA, Perrin JS, Walker CD, Stewart J, Amir S. Glucocorticoid rhythms control the rhythm of expression of the clock protein, Period2, in oval nucleus of the bed nucleus of the stria terminalis and central nucleus of the amygdala in rats. Neurosci 2006;140: 753-7.

Segall LA, Amir S. Glucocorticoid regulation of clock gene expression in the mammalian limbic forebrain. J Mol Neurosci 2010;42:168-75.

Parylak SL, Cottone P, Sabino V, Rice KC, Zorrilla EP. Effects of CB1 and CRF1 receptor antagonists on binge-like eating in rats with limited access to a sweet fat diet: Lack of withdrawal-like responses. Physiol Behav 2012;107(2): 231-42. Disponible en: http://www.ncbi.nlm.nih.gov/pubmed/22776620. Fecha de última visita: 23 de Febrero del 2021.

Storch KF, Lipan O, Leykin I, Viswanathan N, Davis FC, Wong WH, Weitz CJ. Extensive and divergent circadian gene expression in liver and heart. Nature 2002;417:78-83.

Bray MS, Shaw CA, Moore MWS, Garcia RAP, Zanquetta MM, Durgan DJ; et al. Disruption of the circadian clock within the cardiomyocyte influences myocardial contractile function, metabolism, and gene expression. Am J Physiol Hear Circ Physiol 2008;294:H1036-47. Disponible en: http://www.ncbi.nlm.nih.gov/pubmed/18156197. Fecha de última visita: 23 de Febrero del 2021.

Škrlec I, Milic J, Heffer M, Peterlin B, Wagner J. Genetic variations in circadian rhythm genes and susceptibility for myocardial infarction. Genet Mol Biol 2018;41:403-9.

Martino TA, Tata N, Belsham DD, Chalmers J, Straume M, Lee P; et al. Disturbed diurnal rhythm alters gene expression and exacerbates cardiovascular disease with rescue by resynchronization. Hypertens 2007;49 (5):1104-13. Disponible en: http://www.ncbi.nlm.nih.gov/pubmed/17339537. Fecha de última visita: 23 de Febrero del 2021.

Viswambharan H, Carvas JM, Antic V, Marecic A, Jud C, Zaugg CE; et al. Mutation of the circadian clock gene Per2 alters vascular endothelial function. Circulation 2007;115(16):2188-95. Disponible en: http://www.ncbi.nlm.nih.gov/pubmed/17404161. Fecha de última visita: 23 de Febrero del 2021.

Koyanagi S, Kuramoto Y, Nakagawa H, Aramaki H, Ohdo S, Soeda S; et al. A molecular mechanism regulating circadian expression of vascular endothelial growth factor in tumor cells. Cancer Res 2003;63:7277-83.

Bonney S, Kominsky D, Brodsky K, Eltzschig H, Walker L, Eckle T. Cardiac Per2 functions as novel link between fatty acid metabolism and myocardial inflammation during ischemia and reperfusion injury of the heart. PLoS One 2013;8(8):e71493. Disponible en: http://www.ncbi.nlm.nih.gov/pubmed/23977055. Fecha de última visita: 23 de Febrero del 2021.

Eckle T, Hartmann K, Bonney S, Reithel S, Mittelbronn M, Walker LA; et al. Adora2b-elicited Per2 stabilization promotes a HIF-dependent metabolic switch crucial for myocardial adaptation to ischemia. Nat Med 2012;18(5):774-82. Disponible en: http://www.ncbi.nlm.nih.gov/pubmed/22504483. Fecha de última visita: 23 de Febrero del 2021.

Arjona A, Sarkar D. The circadian gene mPer2 regulates the daily rhythm of IFN-γ [Short communication]. J Interferon Cytokine Res 2006;26:645-9.

Liu J, Malkani G, Mankani G, Shi X, Meyer M, Cunningham-Runddles S; et al. The circadian clock Period 2 gene regulates gamma interferon production of NK cells in host response to lipopolysaccharide-induced endotoxic shock. Infect Immun 2006;74(8):4750-6. Disponible en: http://www.ncbi.nlm.nih.gov/pubmed/16861663. Fecha de última visita: 23 de Febrero del 2021.

Asher G, Sassone-Corsi P. Time for food: The intimate interplay between nutrition, metabolism, and the circadian clock. Cell 2015;161(1):84-92. Disponible en: http://dx.doi.org/10.1016/j.cell.2015.03.015. Fecha de última visita: 23 de Febrero del 2021.

Goo RH, Moore JG, Greenberg E, Alazraki NP. Circadian variation in gastric emptying of meals in humans. Gastroenterology 1987;93:515-8.

Dallmann R, Viola AU, Tarokh L, Cajochen C, Brown SA. The human circadian metabolome. PNAS 2012;109: 2625-9.

Neufeld-Cohen A, Robles MS, Aviram R, Manella G, Adamovich Y, Ladeuix B, et al. Circadian control of oscillations in mitochondrial rate-limiting enzymes and nutrient utilization by PERIOD proteins. Proc Natl Acad Sci USA 2016;113: E1673-E1682.

Bae K, Lee K, Seo Y, Lee H, Kim D, Choi I. Differential effects of two period genes on the physiology and proteomic profiles of mouse anterior tibialis muscles. Mol Cells 2006;22:275-84.

McKenna NJ, Lanz RB, O’Malley BW. Nuclear receptor coregulators: Cellular and molecular biology. Endocr Rev 1999;20:321-44.

Perissi V, Staszewski LM, McInerney EM, Kurokawa R, Krones A, Rose DW; et al. 1999. Molecular determinants of nuclear receptor-corepressor interaction. Genes Dev 1999;13:3198-208.

Schmutz I, Albrecht U, Ripperger JA. The role of clock genes and rhythmicity in the liver. Mol Cell Endocrinol 2012; 349:38-44.

Schmutz I, Ripperger JA, Baeriswyl-Aebischer S, Albrecht U. The mammalian clock component PERIOD2 coordinates circadian output by interaction with nuclear receptors. Genes Dev 2010;24:345-57.

Grimaldi B, Bellet MM, Katada S, Astarita G, Hirayama J, Amin RH; et al. PER2 controls lipid metabolism by direct regulation of PPARγ. Cell Metab 2010;12:509-20.

Gooley JJ. Circadian regulation of lipid metabolism. Proc Nut Soc 2016;75:440-50.

Wang M, Jing Y, Hu L, Gao J, Ding L, Zhang J. Recent advances on the circadian gene PER2 and metabolic rhythm of lactation of mammary gland. Anim Nutr 2015;1(4):257-61. Disponible en: http://dx.doi.org/10.1016/j.aninu.2015.11.008. Fecha de última visita: 23 de Febrero del 2021.

Froy O. Metabolism and circadian rhythms- Implications for obesity. Endocr Rev 2010;31:1-24.

Gómez-Abellán P, Hernández-Morante JJ, Luján JA, Madrid JA, Garaulet M. Clock genes are implicated in the human metabolic syndrome. Int J Obes 2008;32:121-8.

Shimba S, Ogawa T, Hitosugi S, Ichihashi Y, Nakadaira Y, Kobayashi M; et al. Deficient of a clock gene, brain and muscle Arnt-like protein-1 (BMAL1), induces dyslipidemia and ectopic fat formation. PLoS One 2011;6(9):e25231. Disponible en: http://www.ncbi.nlm.nih.gov/pubmed/21966465. Fecha de última visita: 23 de Febrero del 2021.

Jeon TI, Osborne TF. SREBPs: Metabolic integrators in physiology and metabolism Trends Endocrinol Metab 2012;23:65-72.

Chou CF, Zhu X, Lin YY, Gamble KL, Garvey WT, Chen CY. KSRP is critical in governing hepatic lipid metabolism through controlling Per2 expression. J Lipid Res 2015;56:227-40.

Zhao Y, Zhang Y, Zhou M, Wang S, Hua Z, Zhang J. Loss of mPer2 increases plasma insulin levels by enhanced glucose-stimulated insulin secretion and impaired insulin clearance in mice. FEBS Lett 2012;586:1306-11.

Jarrett RJ, Baker IA, Keen H, Oakley NW. Diurnal variation in oral glucose tolerance: Blood sugar and plasma insulin levels morning, afternoon, and evening. Br Med J 1972;1(5794):199-201.

Carroll KF, Nestel PJ. Diurnal variation in glucose tolerance and in insulin secretion in man. Diabetes 1973;22:333-48.

Saad A, Man CD, Nandy DK, Levine JA, Bharucha AE, Rizza RA; et al. Diurnal pattern to insulin secretion and insulin action in healthy individuals. Diabetes 2012;61:2691-700.

Yoshino J, Almeda-Valdes P, Patterson BW, Okunade AL, Imai S, Mittendorfer B; et al. Diurnal variation in insulin sensitivity of glucose metabolism is associated with diurnal variations in whole-body and cellular fatty acid metabolism in metabolically normal women. J Clin Endocrinol Metab 2014;99(9):E1666–70. Disponible en: https://academic.oup.com/jcem/article/99/9/E1666/2537471. Fecha de última visita: 23 de Febrero del 2021.

Poggiogalle E, Jamshed H, Peterson CM. Circadian regulation of glucose, lipid, and energy metabolism in humans. Metabolism 2018;84:11-27. Disponible en: https://doi.org/10.1016/j.metabol.2017.11.017. Fecha de última visita: 23 de Febrero del 2021.

Kalra SP, Bagnasco M, Otukonyong EE, Dube MG, Kalra PS. Rhythmic, reciprocal ghrelin and leptin signaling: New insight in the development of obesity. Regulatory Peptides 2003;111: 1-11.

Pan X, Terada T, Okuda M, Inui K-I. The diurnal rhythm of the intestinal transporters SGLT1 and PEPT1 is regulated by the feeding conditions in rats. J Nutr 2004;134(9):2211-5. Disponible en: http://www.ncbi.nlm.nih.gov/pubmed/15333706. Fecha de última visita: 23 de Febrero del 2021.

Houghton SG, Iqbal CW, Duenes JA, Fatima J, Kasparek MS, Sarr MG. Coordinated, diurnal hexose transporter expression in rat small bowel: implications for small bowel resection. Surgery 2008;143(1):79-93. Disponible en: http://www.ncbi.nlm.nih.gov/pubmed/18154936. Fecha de última visita: 23 de Febrero del 2021.

Klok MD, Jakobsdottir S, Drent ML. Role of leptin and ghrelin in the regulation of food intake and body weight. Obes Rev 2007;8:21-34.

Friedman JM. The function of leptin in nutrition, weight, and physiology. Nutr Rev 2002;60(Suppl):S1-S14.

So AYL, Bernal TU, Pillsbury ML, Yamamoto KR, Feldman BJ. Glucocorticoid regulation of the circadian clock modulates glucose homeostasis. Proc Natl Acad Sci USA 2009;106:17582-7.

Yang S, Liu A, Weidenhammer A, Cooksey RC, Mcclain D, Kim MK; et al. The role of mPer2 clock gene in glucocorticoid and feeding rhythms. Endocrinology 2009;150:2153-60.

Zani F, Breasson L, Becattini B, Vukolic A, Montani JP, Albrecht U; et al. PER2 promotes glucose storage to liver glycogen during feeding and acute fasting by inducing Gys2 PTG and GL expression. Mol Metab 2013;2:292-305.

Oosterman JE, Belsham DD. Glucose alters Per2 rhythmicity independent of AMPK, whereas AMPK inhibitor compound C causes profound repression of clock genes and AgRP in mHypoE-37 hypothalamic neurons. PLoS One 2016;11(1):e0146969. Disponible en: https://dx.plos.org/10.1371/journal.pone.0146969. Fecha de última visita: 23 de Febrero del 2021.

Hirota T, Okano T, Kokame K, Shirotani-Ikejima H, Miyata T, Fukada Y. Glucose down-regulates Per1 and Per2 mRNA levels and induces circadian gene expression in cultured rat-1 fibroblasts. J Biol Chem 2002;277:44244-51.

Eide EJ, Woolf MF, Kang H, Woolf P, Hurst W, Camacho F; et al. Control of mammalian circadian rhythm by CKI-regulated proteasome-mediated PER2 degradation. Mol Cell Biol 2005;25:2795-807.

Carling D. The AMP-activated protein kinase cascade- A unifying system for energy control. Trends Biochem Sci 2004;29:18-24.

Kalsbeek A, La Fleur S, Fliers E. Circadian control of glucose metabolism. Mol Metab 2014;3:372-83.

Eckel-Mahan KL, Patel VR, De Mateo S, Orozco-Solis R, Ceglia NJ, Sahar S; et al. Reprogramming of the circadian clock by nutritional challenge. Cell 2013;155(7):1464-78. Disponible en: http://dx.doi.org/10.1016/j.cell.2013.11.034. Fecha de última visita: 23 de Febrero del 2021.

Kohsaka A, Laposky AD, Ramsey KM, Estrada C, Joshu C, Kobayashi Y; et al. High-fat diet disrupts behavioral and molecular circadian rhythms in mice. Cell Metab 2007;6(5):414–21. Disponible en: http://www.ncbi.nlm.nih.gov/pubmed/17983587. Fecha de última visita: 23 de Febrero del 2021.

Wehrens SMT, Christou S, Isherwood C, Middleton B, Gibbs MA, Archer SN; et al. Meal timing regulates the human circadian system. Curr Biol 2017;27(12):1768-1775.e3. Disponible en: http://dx.doi.org/10.1016/j.cub.2017.04.059. Fecha de última visita: 23 de Febrero del 2021.

Adamovich Y, Rousso-Noori L, Zwighaft Z, Neufeld-Cohen A, Golik M, Kraut-Cohen J; et al. Circadian clocks and feeding time regulate the oscillations and levels of hepatic triglycerides. Cell Metab 2014;19(2):319-30. Disponible en: http://www.ncbi.nlm.nih.gov/pubmed/24506873. Fecha de última visita: 25 de Febrero del 2021.

Milagro FI, Gómez-Abellán P, Campión J, Martínez JA, Ordovás JM, Garaulet M. CLOCK, PER2 and BMAL1 DNA methylation: Association with obesity and metabolic syndrome characteristics and monounsaturated fat intake. Chronobiol Int 2012;29:1180-94.

Albrecht U. The circadian clock, metabolism and obesity. Obes Rev 2017;18(1 Suppl):S25-S33.

Maury E, Hong HK, Bass J. Circadian disruption in the pathogenesis of metabolic syndrome. Diabetes Metab 2014;40(5):338-46. Disponible en: http://dx.doi.org/10.1016/j.diabet.2013.12.005. Fecha de última visita: 23 de Febrero del 2021.

Staels B. When the clock stops ticking, Metabolic syndrome explodes. Nat Med 2006;12(1):54-5. Disponible en: http://www.ncbi.nlm.nih.gov/pubmed/16397568. Fecha de última visita: 23 de Febrero del 2021.

Scheer FAJL, Hilton MF, Mantzoros CS, Shea SA. Adverse metabolic and cardiovascular consequences of circadian misalignment. Proc Natl Acad Sci USA 2009;106:4453-8.

Garaulet M, Madrid JA. Chronobiological aspects of nutrition, Metabolic syndrome and obesity. Adv Drug Deliv Rev 2010;62(9-10):967-78. Disponible en: http://dx.doi.org/10.1016/j.addr.2010.05.005. Fecha de última visita: 23 de Febrero del 2021.

Englund A, Kovanen L, Saarikoski ST, Haukka J, Reunanen A, Aromaa A; et al. NPAS2 and PER2 are linked to risk factors of the metabolic syndrome. J Circadian Rhythms 2009;7:1-9.

Garaulet M, Corbalán-Tutau MD, Madrid JA, Baraza JC, Parnell LD, Lee YC; et al. PERIOD2 variants are associated with abdominal obesity, Psycho-behavioral factors, and attrition in the dietary treatment of obesity. J Am Diet Assoc 2010;110:917-21.

Oike H, Sakurai M, Ippoushi K, Kobori M. Time-fixed feeding prevents obesity induced by chronic advances of light/dark cycles in mouse models of jet-lag/shift work. Biochem Biophys Res Commun 2015;465:556-61.

Arble DM, Bass J, Laposky AD, Vitaterna MH, Turek FW. Circadian timing of food intake contributes to weight gain. Obesity [Silver Spring] 2009;17:2100-2.

Gibbs M, Harrington D, Starkey S, Williams P, Hampton S. Diurnal postprandial responses to low and high glycaemic index mixed meals. Clin Nutr 2014;33(5):889-94. Disponible en: http://dx.doi.org/10.1016/j.clnu.2013.09.018. Fecha de última visita: 25 de Febrero del 2021.

Husse J, Hintze SC, Eichele G, Lehnert H, Oster H. Circadian clock genes Per1 and Per2 regulate the response of metabolism-associated transcripts to sleep disruption. PLoS One 2012;7(12):e52983. Disponible en: http://www.ncbi.nlm.nih.gov/pubmed/23285241. Fecha de última visita: 25 de Febrero del 2021.

Wolfe BM, Kvach E, Eckel RH. Treatment of obesity: Weight loss and bariatric surgery. Circ Res 2016;118:1844-55.

Inabnet III WB, Winegar DA, Sherif B, Sarr MG. Early outcomes of bariatric surgery in patients with metabolic syndrome: An analysis of the bariatric outcomes longitudinal database. J Am Coll Surg 2012;214:550-6.

Goh YM, Toumi Z. Surgical cure for type 2 diabetes by foregut or hindgut operations: A myth or reality? A systematic review. Surg Endosc 2017;31:25-37.

Kim M, Son YG, Kang YN, Ha TK, Ha E. Changes in glucose transporters, gluconeogenesis, and circadian clock after duodenal-jejunal bypass surgery. Obes Surg 2015;25(4):635-41. Disponible en: http://www.ncbi.nlm.nih.gov/pubmed/25186372. Fecha de última visita: 25 de Febrero del 2021.

Joly-Amado A, Cansell C, Denis RG, Delbes AS, Castel J, Martinez S, Luquet S. The hypothalamic arcuate nucleus and the control of peripheral substrates. Best Pract Res Clin Endocrinol Metab 2014; 28:725-37.

Cleal JK, Bruce KD, Shearer JL, Thomas H, Plume J, Gregory L; et al. Maternal obesity during pregnancy alters daily activity and feeding cycles, and hypothalamic clock gene expression in adult male mouse offspring. Int J Mol Sci 2019;20:1-19.

Enlaces refback

  • No hay ningún enlace refback.




Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial 4.0 Internacional.