Sobre los trastornos nutricionales en las ataxias espinocerebelosas, la enfermedad de Huntington y otras afecciones poliglutamínicas

Tania Rodríguez Graña, Luis Velázquez Pérez, Sergio Santana Porbén

Texto completo:

PDF

Resumen

Las ataxias espinocerebelosas (SCA de sus siglas en inglés) comprenden varias afecciones neurodegenerativas que son hereditarias con carácter autosómico dominante. Las SCAs se destacan por la gran heterogeneidad clínica, morfológica, y neurofisiológica. Las SCAs más frecuentes son las que se integran dentro de las enfermedades poliglutamínicas (poliQ): entidades que son causadas por la expansión de un triplete de citosina-adenina-guanina (CAG) en regiones codificantes de genes especificados del genoma humano. La sobreexpresión del triplete CAG resulta en la aparición de proteínas estructuralmente defectuosas.  El daño estructural se traslada a un plegamiento anormal, y con ello, la formación de agregados de proteínas dañadas. La deposición de estos agregados suele culminar en la muerte de la célula afectada. Los pacientes SCA suelen presentar pérdida involuntaria de la masa muscular esquelética (MME) asociada a la muerte neuronal propia de la ataxia, lo que afectaría la movilidad, el funcionalismo y la autonomía de los mismos. El daño muscular también puede sobrevenir debido a la acumulación tóxica de proteínas mutadas en el miocito. Sin embargo, es probable que la reducción de la MME pueda ocurrir como consecuencia de la inflamación sistémica, la resistencia aumentada a la acción periférica de la insulina, y la hipercatabolia. Estos cambios moleculares y metabólicos podrían afectar de forma independiente la evolución de la enfermedad atáxica y la respuesta al tratamiento. Se revisan los resultados de los modelos animales de estudio de las SCA, los reportes internacionales de casos, y la casuística acumulada por la autora para explorar tales hipótesis. Se explora también la presencia de estados de insulinorresistencia en las otras enfermedades poliglutamínicas.

Palabras clave

Ataxias espinocerebelosas; Enfermedades poliglutamínicas; Resistencia a la insulina; Pérdida involuntaria de peso; Inflamación

Referencias

Paulson HL, Shakkottai VG, Clark HB, Orr HT. Polyglutamine spinocerebellar ataxias- From genes to potential treatments. Nat Rev Neurosci 2017;18: 613-26. Disponible en: http://doi:10.1038/nrn.2017.92. Fecha de última visita: 14 de Marzo del 2018.

Underwood BR, Rubinsztein DC. Spinocerebellar ataxias caused by polyglutamine expansions: A review of therapeutic strategies. The Cerebellum 2008;7:215-21.

Fan HC, Ho L, Chi CS, Chen SJ, Peng GS, Chan TM; et al. Polyglutamine (polyQ) diseases: Genetics to treatments. Cell Transplant 2014;23:441-58.

Shao J, Diamond MI. Polyglutamine diseases: Emerging concepts in pathogenesis and therapy. Human Mol Genet 2007;16(R2):R115-R123.

Margolis RL, Ross CA. Expansion explosion: New clues to the pathogenesis of repeat expansion neurodegenerative diseases. Trends Mol Med 2001;7:479-82.

Everett CM, Wood NW. Trinucleotide repeats and neurodegenerative disease. Brain 2004;127:2385-405.

Williams AJ, Paulson HL. Polyglutamine neurodegeneration: Protein misfolding revisited. Trends Neurosci 2008;31: 521-8.

Taylor JP, Hardy J, Fischbeck KH. Toxic proteins in neurodegenerative disease. Science 2002:296(5575):1991-5.

Zoghbi HY, Orr HT. Polyglutamine diseases: Protein cleavage and aggregation. Curr Op Neurobiol 1999;9:566-70.

Perutz MF. Glutamine repeats and neurodegenerative diseases: Molecular aspects. Trends Biochem Sci 1999;24:58-63.

Kumar V, Sami N, Kashav T, Islam A, Ahmad F, Hassan MI. Protein aggregation and neurodegenerative diseases: From theory to therapy [Review]. Eur J Med Chem 2016;124: 1105-20. Disponible en: http://doi:10.1016/j.ejmech.2016.07.054. Fecha de última visita: 26 Julio del 2018.

Ross CA, MA Poirier. Protein aggregation and neurodegenerative disease [Review]. Nat Med 2004;10(Suppl):S10-S17.

Paulson HL, Bonini NM, Roth KA. Polyglutamine disease and neuronal cell death. Proc Nat Acad Sci 2000;97:12957-8.

Paulson HL. Toward an understanding of polyglutamine neurodegeneration. Brain Pathol 2000;10:293-9.

Schöls L, Bauer P, Schmidt T, Schulte T, Riess O. Autosomal dominant cerebellar ataxias: Clinical features, genetics, and pathogenesis. The Lancet Neurol 2004;3:291-304.

Schöls L, Amoiridis G, Büttner T, Przuntek H, Epplen JT, Riess O. Autosomal dominant cerebellar ataxia: Phenotypic differences in genetically defined subtypes? Ann Neurol 1997;42:924-32.

Rodríguez Graña T, Rodríguez Labrada R, Santana Porbén S, Serrá Rojas E, Velázquez Pérez L. Alteraciones del peso corporal en las enfermedades poliglutamínicas. Anales Acad Ciencias Cuba 2018;11(2):0-0. Disponible en: https://www.revistaccuba.cu/index.php/revacc. Fecha de última visita: 16 de Diciembre del 2018.

Marcos Plasencia LM, Padrón Sánchez A. Propuesta de protocolo de intervención alimentaria, nutrimental y metabólica como parte de la atención integral al paciente con Enfermedad de Parkinson. En: La nutrición en las enfermedades neurológicas [Resúmenes de las ponencias presentadas en un curso nacional celebrado en ocasión del V Congreso Nacional de Nutrición Clínica y Metabolismo. Instituto de Neurología y Neurocirugía. La Habana. Noviembre 9, 2009]. RCAN Rev Cubana Aliment Nutr 2009;19(2 Supl):S49-S71.

Roos RAC. Huntington's disease: A clinical review. Orphanet J Rare Dis 2010;5:40-40. Disponible en: http://doi:10.1186/1750-1172-5-40. Fecha de última visita: 16 de Julio del 2018.

Yamada M. Dentatorubral-pallidoluysian atrophy (DRPLA): The 50th Anniversary of Japanese Society of Neuropathology. Neuropathology 2010;30(5):453-7. Disponible en: http://doi:10.1111/j.1440-1789.2010.01120.x. Fecha de última visita: 17 de Julio del 2018.

Grunseich C, Rinaldi C, Fischbeck KH. Spinal and bulbar muscular atrophy: Pathogenesis and clinical management. Oral Dis 2014;20:6-9.

Sobue G. X-linked recessive bulbospinal neuronopathy (SBMA). Nagoya J Med Sci 1995;58:95-106.

Manto MU. The wide spectrum of spinocerebellar ataxias (SCAs). The Cerebellum [London] 2005;4:2-6.

Schöls L, Bauer P, Schmidt T, Schulte T, Riess O. Autosomal dominant cerebellar ataxias: Clinical features, genetics, and pathogenesis. The Lancet Neurol 2004;3:291-304.

Aziz N, van der Marck M, Pijl H, Olde Rikkert M, Bloem B, Roos R. Weight loss in neurodegenerative disorders. J Neurol 2008;255:1872-80.

de Miranda RC, Di Lorenzo N, Andreoli A, Romano L, De Santis GL, Gualtieri P, De Lorenzo A. Body composition and bone mineral density in Huntington's disease. Nutrition 2019;59:145-9.

Marder K, Zhao H, Eberly S, Tanner CM, Oakes D, Shoulson I. Dietary intake in adults at risk for Huntington disease: Analysis of PHAROS research participants. Neurology 2009;73:385-92.

Pratley RE, Salbe AD, Ravussin E, Caviness JN. Higher sedentary energy expenditure in patients with Huntington's disease. Ann Neurol 2000;47:64-70.

Sanberg PR, Fibiger HC, Mark RF. Body weight and dietary factors in Huntington's disease patients compared with matched controls. Med J Austral 1981;1:407-9.

Djousse L, Knowlton B, Cupples LA, Marder K, Shoulson I, Myers RH. Weight loss in early stage of Huntington's disease. Neurology 2002; 59:1325-30.

Cubo E, Rivadeneyra J, Gil-Polo C, Armesto D, Mateos A, Mariscal-Pérez N. Body composition analysis as an indirect marker of skeletal muscle mass in Huntington's disease. J Neurol Sci 2015; 358:335-8.

Robbins AO, Ho AK, Barker RA. Weight changes in Huntington's disease. Eur J Neurol 2006;13(8):e7-e7. Disponible en: https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1468-1331.2006.01319.x. Fecha de última visita: 16 de Agosto del 2018.

Farrer LA, Meaney FJ. An anthropometric assessment of Huntington's disease patients and families. Am J Phys Anthropol 1985; 67:185-94.

Farrer LA, Yu PI, Opitz JM, Reynolds JF. Anthropometric discrimination among affected, at‐risk, and not‐at‐risk individuals in families with Huntington disease. Am J Med Genet 1985;21:307-16.

Trejo A, Tarrats RM, Alonso ME, Boll MC, Ochoa A, Velasquez L. Assessment of the nutrition status of patients with Huntington’s disease. Nutrition 2004;20:192-6. Disponible en: http://doi:10.1016/j.nut.2003.10.007. Fecha de última visita: 18 de Julio del 2018.

Süssmuth SD, Müller VM, Geitner C, Landwehrmeyer GB, Iff S, Gemperli A, Orth M. Fat-free mass and its predictors in Huntington’s disease. J Neurol 2015; 262:1533-40.

Morales LM, Estevez J, Suarez H, Villalobos R, Chacin de Bonilla L, Bonilla E. Nutritional evaluation of Huntington disease patients. Am J Clin Nutr 1989;50:145-50.

Hamilton JM, Wolfson T, Peavy GM, Jacobson MW, Corey-Bloom J. Rate and correlates of weight change in Huntington’s disease. J Neurol Neurosurg Psych 2004;75:209-12.

Cubo E, Rivadeneyra J, Armesto D, Mariscal N, Martinez A, Camara RJ. Relationship between nutritional status and the severity of Huntington's disease. A Spanish multicenter dietary intake study. J Huntington's Dis 2015;4:75-85.

Gaba AM, Zhang K, Marder K, Moskowitz CB, Werner P, Boozer CN. Energy balance in early-stage Huntington disease. Am J Clin Nutr 2005;81:1335-41.

Hayden MR. Huntington’s chorea. Springer Science & Business Media. New York: 2012.

Aziz NA, van Der Burg JMM, Landwehrmeyer GB, Brundin P, Stijnen T, Roos RAC; for the EHDI Study Group. Weight loss in Huntington disease increases with higher CAG repeat number. Neurology 2008;71:1506-13.

van der Burg JM, Bacos K, Wood NI, Lindqvist A, Wierup N, Woodman B; et al. Increased metabolism in the R6/2 mouse model of Huntington’s disease. Neurobiol Dis 2008;29:41-51.

Fain JN, Del Mar NA, Meade CA, Reiner A, Goldowitz D. Abnormalities in the functioning of adipocytes from R6/2 mice that are transgenic for the Huntington’s disease mutation. Human Mol Genet 2001;10:145-52.

Aziz AN, Pijl H, Frölich M, Maurits van der Graaf AW, Roelfsema F, Roos RA. Leptin secretion rate increases with higher CAG repeat number in Huntington’s disease patients. Clin Endocrinol 2010;73:206-11.

Josefsen K, Nielsen MD, Jørgensen KH, Bock T, Nørremølle A, Sørensen SA; et al. Impaired glucose tolerance in the R6/1 transgenic mouse model of Huntington’s disease. J Neuroendocrinol 2008;20:165-72.

Phan J, Hickey MA, Zhang P, Chesselet MF, Reue K. Adipose tissue dysfunction tracks disease progression in two Huntington's disease mouse models. Human Mol Genet 2009;18:1006-16.

van Der Burg JM, Gardiner SL, Ludolph AC, Landwehrmeyer GB, Roos RA, Aziz NA. Body weight is a robust predictor of clinical progression in Huntington disease. Ann Neurol 2017; 82:479-83. Disponible en: http://doi:10.1002/ana.25007. Fecha de última visita: 17 de Mayo del 2018.

Cubo E, Rivadeneyra J, Mariscal N, Martinez A, Armesto D, Camara RJ; for the Spanish Members of the European Huntington's Disease Registry. Factors associated with low body mass index in Huntington's disease: A Spanish Multicenter Study of the European Huntington's Disease Registry. Mov Disord Clin Pract 2016;3:452-459. Disponible en: http://doi:10.1002/mdc3.12304. Fecha de última visita: 17 de Mayo del 2018.

Nance MA, Sanders G. Characteristics of the Individuals with Huntington disease in long-term care. Mov Disord 1996;11:542-8.

Machado-Joseph disease/spinocerebellar ataxia type 3. Paulson H. Handb Clin Neurol 2012;103:437-49.

Velázquez-Pérez L, Rodríguez-Labrada R, García-Rodríguez JC, Almaguer-Mederos LE, Cruz-Mariño T, Laffita-Mesa JM. A comprehensive review of spinocerebellar ataxia type 2 in Cuba. The Cerebellum [London] 2011;10:184-98.

Velázquez-Pérez L, Santos FN, Garcia R, Paneque HM, Hechavarria PR. Epidemiology of Cuban hereditary ataxia. Rev Neurología 2001;32:606-11.

Laffita-Mesa JM, Velázquez-Pérez LC, Falcón NS, Cruz-Marino T, Zaldívar YG, Mojena YV; et al. Unexpanded and intermediate CAG polymorphisms at the SCA2 locus (ATXN2) in the Cuban population: Evidence about the origin of expanded SCA2 alleles. Eur J Human Genet 2012;20:41-9.

Saute JAM, da Silva ACF, Souza GN, Russo AD, Donis KC, Vedolin L; et al. Body mass index is inversely correlated with the expanded CAG repeat length in SCA3/MJD patients. The Cerebellum [London] 2012;11:771-4.

Diallo A, Jacobi H, Schmitz-Hübsch T, Cook A, Labrum R, Durr A; et al. Body Mass Index decline is related to disease progression in spinocerebellar ataxia. Mov Disord Clin Pract 2017;4(5):689-97. Disponible en: http://doi:10.1002/mdc3.12522. Fecha de última visita: 16 de Marzo del 2018.

Teive H, Leite C, Macedo D, Schieferdecker ME, Vilela R, Moro A. Estimation of skeletal muscle mass in patients with spinocerebellar ataxia. Parkinson Relat Disord 2016;22: e150:e150. Disponible en: https://doi.org/10.1016/j.parkreldis.2015.10.351. Fecha de última visita: 16 de Marzo del 2018.

Teive H, Leite C, Macedo D, Schieferdecker ME, Vilela R, Moro A. Anthropometric profile of patients with spinocerebellar ataxia. Parkinson Relat Disord 2016;22:e149-e150. Disponible en: https://doi.org/10.1016/j.parkreldis.2015.10.349. Fecha de última visita: 18 de Marzo del 2018.

Leite CDMA, Schieferdecker MEM, Frehner C, Munhoz RP, Ashizawa T, Teive HA. Body composition in spinocerebellar ataxia type 3 and 10 patients: Comparative study with control group. Nutr Neurosci 2018;2018:1-6. Disponible en: http://doi:10.1080/1028415X.2018.1469282. Fecha de última visita: 19 de Marzo del 2019.

van Raamsdonk JM, Gibson WT, Pearson J, Murphy Z, Lu G, Leavitt BR, Hayden MR. Body weight is modulated by levels of full-length huntingtin. Hum Mol Genet 2006;15:1513-23.

Carmo-Silva S, Nobrega C, de Almeida LP, Cavadas C. Unraveling the role of ataxin-2 in metabolism. Trends Endocrinol Metab 2017;28:309-18.

Huang S, Yang S, Guo J, Yan S, Gaertig MA, Li S; et al. Large polyglutamine repeats cause muscle degeneration in SCA17 mice. Cell Rep 2015;13:196-208.

Zielonka D, Piotrowska I, Marcinkowski JT. Skeletal muscle pathology in Huntington’s disease. Front Physiol 2014;5:380-380. Disponible en: http://doi:10.3389/fphys.2014.00380. Fecha de última visita: 17 de Abril del 2019.

Cedarbaum JM, Blass JP. Mitochondrial dysfunction and spinocerebellar degenerations. Neurochem Pathol 1986; 4:43-63.

Emerit J, Edeas M, Bricaire F. Neurodegenerative diseases and oxidative stress. Biomed Pharmacother 2004;58:39-46.

Wang R, Ross CA, Cai H, Cong WN, Daimon CM, Carlson OD; et al. Metabolic and hormonal signatures in pre-manifest and manifest Huntington's disease patients. Front Physiol 2014;5: 231-231. Disponible en: https://www.frontiersin.org/articles/10.3389/fphys.2014.00231. Fecha de última visita: 18 de Abril del 2018.

Cattaneo E, Zuccato C, Tartari M. Normal huntingtin function: An alternative approach to Huntington's disease. Nature Rev Neurosci 2005;6: 919-30. Disponible en: https://www.nature.com/articles/nrn1806. Fecha de última visita: 19 de abril del 2018.

Berryman DE, Christiansen JS, Johannsson G, Thorner MO & Kopchick JJ. Role of the GH/IGF-1 axis in lifespan and healthspan: Lessons from animal models. Growth Horm IGF Res 2008;18: 455-71.

Møller N, Jørgensen JOL. Effects of growth hormone on glucose, lipid, and protein metabolism in human subjects. Endocrine Rev 2009;30:152-77.

Pouladi MA, Xie Y, Skotte NH, Ehrnhoefer DE, Graham RK, Kim JE; et al. Full-length huntingtin levels modulate body weight by influencing insulin-like growth factor 1 expression. Hum Mol Genet 2010;19:1528-38. http://doi:10.1093/hmg/ddq026. Fecha de última visita: 17 de Mayo del 2018.

Baker J, Liu JP, Robertson EJ & Efstratiadis A. Role of insulin-like growth factors in embryonic and postnatal growth. Cell 1993;75:73-82.

van Raamsdonk JM, Gibson WT, Pearson J, Murphy Z, Lu G, Leavitt BR, Hayden MR. Body weight is modulated by levels of full-length huntingtin. Hum Mol Genet 2006;15:1513-23. Fecha de última visita: 28 de Marzo del 2018.

Orr HT. Cell biology of spinocerebellar ataxia. J Cell Biol 2012;197:167-77.

Kasumu A, Bezprozvanny I. Deranged calcium signaling in Purkinje cells and pathogenesis in spinocerebellar ataxia 2 (SCA2) and other ataxias. The Cerebellum [London] 2012;11:630-9.

Stubenvoll MD, Medley JC, Irwin M, Song MH. ATX-2, the C. elegans ortholog of human ataxin-2, regulates centrosome size and microtubule dynamics. PLoS Genetics 2016;12(9): e1006370-e1006370. Disponible en: https://journals.plos.org/plosgenetics/article?id=10.1371/journal.pgen.1006519. Fecha de última visita: 18 de Junio del 2018.

Ostrowski L, Hall A, Mekhail K. Ataxin-2: from RNA control to human health and disease. Genes 2017;8:157-157. Disponible en: http://doi:10.3390/genes8060157. Fecha de última visita: 19 de Junio del 2018.

Lastres-Becker I, Brodesser S, Lütjohann D, Azizov M, Buchmann J, Hintermann E; et al. Insulin receptor and lipid metabolism pathology in ataxin-2 knock-out mice. Human Mol Genet 2008;17: 1465-81.

Figueroa KP, Farooqi S, Harrup K, Frank J, O'Rahilly S, Pulst SM. Genetic variance in the spinocerebellar ataxia type 2 (ATXN2) gene in children with severe early onset obesity. PLoS One 2009;4(12):e8280-e8280. Disponible en: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0008280. Fecha de última visita: 20 de Junio del 2018.

Bar DZ, Charar C, Dorfman J, Yadid T, Tafforeau L, Lafontaine DL, Gruenbaum Y. Cell size and fat content of dietary-restricted Caenorhabditis elegans are regulated by ATX-2, an mTOR repressor. Proc Nat Acad Sci USA 2016;113:E4620-E4629.

Alves-Cruzeiro JM, Mendonça L, Pereira de Almeida L, Nóbrega C. Motor dysfunctions and neuropathology in mouse models of spinocerebellar ataxia type 2: A comprehensive review. Front Neurosci 2016;10:572-572. Disponible en: https://www.frontiersin.org/articles/10.3389/fnins.2016.00572. Fecha de última visita: 19 de Junio del 2018.

Dansithong W, Paul S, Figueroa KP, Rinehart MD, Wiest S, Pflieger LT; et al. Ataxin-2 regulates RGS8 translation in a new BAC-SCA2 transgenic mouse model. PLoS Genet 2015;11(4): e1005182-e1005182. Disponible en: https://journals.plos.org/plosgenetics/article?id=10.1371/journal.pgen.1005182. Fecha de última visita: 19 de Junio del 2019.

Kiehl TR, Nechiporuk A, Figueroa KP, Keating MT, Huynh DP; et al. Generation and characterization of Sca2 (ataxin-2) knockout mice. Biochem Biophys Res Commun 2006;339:17-24.

Scoles DR, Pflieger LT, Thai KK, Hansen ST, Dansithong W, Pulst SM. ETS1 regulates the expression of ATXN2. Human Mol Genet 2012;21: 5048-65.

Abdel-Aleem A, Zaki MS Spinocerebellar ataxia type 2 (SCA2) in an Egyptian family presenting with polyphagia and marked CAG expansion in infancy. J Neurol 2008;255:413-9.

Sarbassov DD, Ali SM, Sabatini DM. Growing roles for the mTOR pathway. Curr Op Cell Biol 2005;17:596-603.

Wullschleger S, Loewith R, Hall MN. TOR signaling in growth and metabolism. Cell 2006;124:471-84.

Perl A. mTOR activation is a central biomarker and pathway to autoimmune disorders, cancer, obesity, and aging. Ann NY Acad Sci 2015;1346:33-44.

Inoki K, Corradetti MN, Guan KL. Dysregulation of the TSC-mTOR pathway in human disease. Nature Genet 2005;37:19-24.

Efeyan A, Comb WC, Sabatini DM. Nutrient-sensing mechanisms and pathways. Nature 2015;517:302-10.

Sengupta S, Peterson TR, Sabatini DM. Regulation of the mTOR complex 1 pathway by nutrients, growth factors, and stress. Mol Cell 2010;40:310-22.

Lastres-Becker I, Nonis D, Eich F, Klinkenberg M, Gorospe M, Kötter P; et al. Mammalian ataxin-2 modulates translation control at the pre-initiation complex via PI3K/mTOR and is induced by starvation. Biochim Biophy Acta Mol Basis Dis 2016;1862:1558-69.

Fittschen M, Lastres-Becker I, Halbach MV, Damrath E, Gispert S, Azizov M; et al. Genetic ablation of ataxin-2 increases several global translation factors in their transcript abundance but decreases translation rate. Neurogenetics 2015;16: 181-92.

Swisher KD, Parker R. Localization to, and effects of Pbp1, Pbp4, Lsm12, Dhh1, and Pab1 on stress granules in Saccharomyces cerevisiae. PloS One 2010;5(4):e10006- e10006. Disponible en: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0010006. Fecha de última visita: 15 de Mayo del 2018.

DeMille D, Badal BD, Evans JB, Mathis AD, Anderson JF, Grose JH. PAS kinase is activated by direct SNF1-dependent phosphorylation and mediates inhibition of TORC1 through the phosphorylation and activation of Pbp1. Mol Biol Cell 2015;26:569-82.

Ciosk R, DePalma M, Priess JR. ATX-2, the C. elegans ortholog of ataxin 2, functions in translational regulation in the germline. Development 2004;131:4831-41.

Andreassen OA, Dedeoglu A, Stanojevic V, Hughes DB, Browne SE, Leech CA; et al. Huntington's disease of the endocrine pancreas: Insulin deficiency and Diabetes mellitus due to impaired insulin gene expression. Neurobiol Dis 2002;11:410-24. Disponible en: http://doi:10.1006/nbdi.2002.0562. Fecha de última visita:

de Mayo del 2018.

Joffe BI, Segal I, Keller P. Insulin levels in hereditary ataxias. N Engl J Med 1970;283(25):1410-1.

Russo CV, Salvatore E, Saccà F, Tucci T, Rinaldi C, Sorrentino P, Massarelli M, Rossi F, Savastano S, Di Maio L, Filla A, Colao A, De Michele G. Insulin sensitivity and early-phase insulin secretion in normoglycemic Huntington's disease patients. J Huntingtons Dis 2013;2:501-7. Disponible en: http://doi:10.3233/JHD-130078. Fecha de última visita: 17 de Junio del 2018.

Lalić NM, Marić J, Svetel M, Jotić A, Stefanova E, Lalić K, Dragasević N, Milicić T, Lukić L, Kostić VS. Glucose homeostasis in Huntington disease: Abnormalities in insulin sensitivity and early-phase insulin secretion. Arch Neurol 2008;65:476-80. Disponible en: http://doi:10.1001/archneur.65.4.476. Fecha de última visita: 17 de Junio del 2018.

Boesgaard TW, Nielsen TT, Josefsen K, Hansen T, Jørgensen T, Pedersen O; et al. Huntington’s disease does not appear to increase the risk of diabetes mellitus. J Neuroendocrinol 2009;21:770-6.

Lalić NM, Dragasević N, Stefanova E, Jotić A, Lalić K, Milicić T; et al. Impaired insulin sensitivity and secretion in normoglycemic patients with spinocerebellar ataxia type 1. Mov Disord 2010;25(12):1976-80. Disponible en: http://doi:10.1002/mds.23176. Fecha de última visita: 20 de Junio del 2018.

Muoio DM, Newgard CB. Mechanisms of disease: Molecular and metabolic mechanisms of insulin resistance and beta-cell failure in type 2 diabetes. Nature Rev Mol Cell Biol 2008;9:193-205.

Schinner S, Scherbaum WA, Bornstein SR, Barthel A. Molecular mechanisms of insulin resistance. Diabetic Medicine 2005;22:674-82.

Zisman A, Peroni OD, Abel ED, Michael MD, Mauvais-Jarvis F, Lowell BB; et al. Targeted disruption of the glucose transporter 4 selectively in muscle causes insulin resistance and glucose intolerance. Nature Med 2000;6:924-8.

Garvey WT, Maianu L, Zhu JH, Brechtel-Hook G, Wallace P, Baron AD. Evidence for defects in the trafficking and translocation of GLUT4 glucose transporters in skeletal muscle as a cause of human insulin resistance. J Clin Invest 1998;101:2377-86.

Mähler A, Steiniger J, Endres M, Paul F, Boschmann M, Doss S. Increased catabolic state in spinocerebellar ataxia type 1 patients. The Cerebellum [London] 2014;13:440-6.

Kim JA, Wei Y, Sowers JR. Role of mitochondrial dysfunction in insulin resistance. Circ Res 2008;102:401-14.

Scholefield J, Wood MJ. Therapeutic gene silencing strategies for polyglutamine disorders. Trends Genet 2010;26:29-38.

Aiba Y, Hu J, Liu J, Xiang Q, Martinez C, Corey DR. Allele-selective inhibition of expression of huntingtin and ataxin-3 by RNA duplexes containing unlocked nucleic acid substitutions. Biochemistry 2013;52:9329-38.

Moore LR, Rajpal G, Dillingham IT, Qutob M, Blumenstein KG, Gattis D; et al. Evaluation of antisense oligonucleotides targeting ATXN3 in SCA3 mouse models. Mol Ther Nucleic Acids 2017;7:200-10.

Eisele YS, Monteiro C, Fearns C, Encalada SE, Wiseman RL, Powers ET, Kelly JW. Targeting protein aggregation for the treatment of degenerative diseases. Nature Rev Drug Discov 2015;14:759-80.

Renna M, Jimenez-Sanchez M, Sarkar S, Rubinsztein DC. Chemical inducers of autophagy that enhance the clearance of mutant proteins in neurodegenerative diseases. J Biol Chem 2010;285:11061-7.

Almaguer LE, Almaguer D, Cuello D, Aguilera R. Autophagy in polyglutamine diseases: Roles and therapeutic implications. Rev Mex Neuroci 2016;17:76-90. Disponible en: http://www.medigraphic.com/pdfs/revmexneu/rmn-2016/rmn161h.pdf. Fecha de última visita: 11 de Julio del 2018.

Auburger G, Sen NE, Meierhofer D, Başak AN, Gitler AD. Efficient prevention of neurodegenerative diseases by depletion of starvation response factor Ataxin-2. Trends Neurosci 2017;40(8):507-16. Disponible en: http://dx.doi.org/10.1016/j.tins.2017.06.004. Fecha de última visita: 11 de Julio del 2018.

Sarkar S, Floto RA, Berger Z, Imarisio S, Cordenier A, Pasco M; et al. Lithium induces autophagy by inhibiting inositol monophosphatase. J Cell Biol 2005;170:1101-11.

Sarkar S. Regulation of autophagy by mTOR-dependent and mTOR-independent pathways: Autophagy dysfunction in neurodegenerative diseases and therapeutic application of autophagy enhancers. Biochem Soc Transact 2013;41:1103-30.

Yamamoto A, Cremona ML, Rothman JE. Autophagy-mediated clearance of huntingtin aggregates triggered by the insulin-signaling pathway. J Cell Biol 2006;172:719-31.

Wolfrath SC, Borenstein AR, Schwartz S, Hauser RA, Sullivan KL, Zesiewicz TA. Use of nutritional supplements in Parkinson's disease patients. Mov Disord 2006;21:1098-101. http://doi:10.1002/mds.20902. Fecha de última visita: 12 de Julio del 2018.

Underwood BR, Imarisio S, Fleming A, Rose C, Krishna G, Heard P; et al. Antioxidants can inhibit basal autophagy and enhance neurodegeneration in models of polyglutamine disease. Human Mol Genet 2010;19:3413-29.

Duan W, Ross CA. Potential therapeutic targets for neurodegenerative diseases: Lessons learned from calorie restriction. Curr Drug Targets 2010;11: 1281-92.

Ilg W, Bastian AJ, Boesch S, Burciu RG, Celnik P, Claaßen J; et al. Consensus paper: Management of degenerative cerebellar disorders. The Cerebellum [London] 2014;13:248-68.

Lee MJ, Park SH, Han JH, Hong YK, Hwang S, Lee S; et al. The effects of hempseed meal intake and linoleic acid on Drosophila models of neurodegenerative diseases and hypercholesterolemia. Mol Cells 2011;31:337-42.

Puri BK, Bydder GM, Manku MS, Clarke A, Waldman AD, Beckmann CF. Reduction in cerebral atrophy associated with ethyl-eicosapentaenoic acid treatment in patients with Huntington's disease. J Int Med Res 2008;36:896-905.

Marsden J, Harris C. Cerebellar ataxia: Pathophysiology and rehabilitation. Clin Rehabil 2011;25:195-216.

Miyai I, Ito M, Hattori N, Mihara M, Hatakenaka M, Yagura H; et al. Cerebellar ataxia rehabilitation trial in degenerative cerebellar diseases. Neurorehabil Neural Repair 2012;26:515-22.

Díaz JCR, Pérez CLV, Cruz GS, Mederos LA, Gotay DA, Fernández JCG; et al. Evaluación de la restauración neurológica en pacientes con ataxia SCA2 cubana. Plasticidad Restauración Neurológica 2008;7(1-2):13-8. Disponible en: https://www.medigraphic.com/pdfs/plasticidad/prn-2008/prn081_2c.pdf. Fecha de última visita: 14 de Julio del 2018.

Hervás D, Fornés-Ferrer V, Gómez-Escribano AP, Sequedo MD, Peiró C, Millán JM, Vázquez-Manrique RP. Metformin intake associates with better cognitive function in patients with Huntington's disease. PLoS One 2017;12(6):e0179283- e0179283. Disponible en: http://doi:10.1371/journal.pone.0179283.

Fecha de última visita: 15 de Julio del 2018.

Arnoux I, Willam M, Griesche N, Krummeich J, Watari H, Offermann N; et al. Metformin reverses early cortical network dysfunction and behavior changes in Huntington's disease. eLife 2018;7:e38744-e38744. Disponible en: http://doi:10.7554/eLife.38744. Fecha de última visita: 4 de Septiembre del 2018.

Enlaces refback

  • No hay ningún enlace refback.