Sobre la anatomía y la fisiología del tejido adiposo. Implicaciones en la cirugía de contorneado abdominal

Heizel Escobar Vega, Alicia María Tamayo Carbon, María Fernanda Rodríguez Castro, Alexey Expósito Jalturin, Luz Marina Miquet Romero

Texto completo:

PDF

Resumen

Introducción: En los últimos años se ha modificado sustancialmente la visión que se tenía del tejido adiposo (TA) como un órgano dedicado exclusivamente al almacenamiento de triglicéridos para entenderlo ahora como un sistema tisular altamente especializado en la regulación de la utilización de la energía corporal y la síntesis y la liberación de mediadores humorales de diverso tipo que pueden influir en todos los dominios de la economía. Las nuevas propiedades y funciones biológicas del TA son más relevantes por cuanto se ha descrito que la aspiración | remoción quirúrgica de grasa subcutánea con fines estéticos puede ser seguida de cambios importantes (entre otros) en la sensibilidad periférica a la acción de la insulina y el perfil lipídico sérico del sujeto. Objetivo: Presentar el conocimiento actual sobre la anatomía y la fisiología del TA. Métodos: El estado actual del conocimiento sobre la anatomía y la fisiología del TA se obtuvo mediante la consulta y búsqueda de contenidos relevantes en las bases de datos bibliográficos ScienceDirect (Elsevier, Países Bajos), Scielo (Scientific Electronic Library Online), Medline (Biblioteca Nacional de Medicina de los Estados Unidos) y Pubmed (Biblioteca Nacional de Medicina de los Estados Unidos), y que se publicaron entre los años 2000 y 2021. Resultados: El TA es hoy visto como un órgano distribuido topográficamente y altamente especializado en diversas funciones biológicas que recorren desde la utilización de la energía metabólica y la regulación de la sensibilidad de los tejidos periféricos a la acción de la insulina hasta la angiogénesis y la diferenciación tisular. Conclusiones: La evolución del concepto del TA como un órgano endocrino altamente especializado ha servido para demostrar que el adipocito ejerce roles y funciones biológicas hasta hace poco desconocidas para este tejido, y donde se incluyen la homeostasis energética, el control del apetito, la termogénesis, la competencia inmune, la reproducción, y el crecimiento y la diferenciación tisulares.

Palabras clave

Tejido adiposo; Anatomía; Fisiología

Referencias

Valenzuela A, Sanhueza J. El tejido adiposo: Algo más que un reservorio de energía. Grasas Aceites 2009;60:437-50. Disponible en: https://grasasyaceites.revistas.csic.es/index.php/grasasyaceites/article/view/597. Fecha de última visita: 17 de Noviembre del 2021.

Mawer EB, Backhouse J, Holman CA, Lumb GA, Stanbury SW. The distribution and storage of vitamin D and its metabolites in human tissues. Clin Sci 1972;43:413-31.

Blomhoff R, Green MH, Berg T, Norum KR. Transport and storage of vitamin A. Science 1990;250(4979):399-404.

Deslypere JP, Verdonck L, Vermeulen A. Fat tissue: A steroid reservoir and site of steroid metabolism. J Clin Endocrinol Metab 1985;61:564-70.

Frayn KN, Karpe F, Fielding BA, Macdonald IA, Coppack SW. Integrative physiology of human adipose tissue. Int J Obes 2003;27:875-88.

Schoettl T, Fischer IP, Ussar S. Heterogeneity of adipose tissue in development and metabolic function. J Exp Biol 2018;221:jeb162958. Disponible en: http://doi:10.1242/jeb.162958. Fecha de última visita: 17 de Noviembre del 2021.

Pellegrinelli V, Carobbio S, Vidal-Puig A. Adipose tissue plasticity: How fat depots respond differently to pathophysiological cues. Diabetologia 2016;59:1075-88. Disponible en: http://doi:10.1007/s00125-016-3933-4. de última visita: 17 de Noviembre del 2021.

Kwok KH, Lam KS, Xu A. Heterogeneity of white adipose tissue: molecular basis and clinical implications. Exp Mol Med 2016;48:e215. Disponible en: http://doi:10.1038/emm.2016.5. Fecha de última visita: 17 de Noviembre del 2021.

Gesta S, Kahn CR. White adipose tissue. En: Adipose Tissue Biology [Symonds M]. Springer. Cham: 2017. Disponible en: https://doi.org/10.1007/978-3-319-52031-5_5. Fecha de última visita: 17 de Noviembre del 2021.

Jung SM, Sanchez-Gurmaches J, Guertin DA. Brown adipose tissue development and metabolism. En: Brown adipose tissue [Editores: Pfeifer A, Klingenspor M, Herzig S]. Handbook of Experimental Pharmacology, vol 251. Springer. Cham: 2018. https://doi.org/10.1007/164_2018_168. Fecha de última visita: 17 de Noviembre del 2021.

Cinti S. The adipose organ: Morphological perspectives of adipose tissues. Proc Nutr Soc 2001;60:319-28.

Zwick RK, Guerrero-Juarez CF, Horsley V, Plikus MV. Anatomical, physiological, and functional diversity of adipose tissue. Cell Metabolism 2018;27:68-83.

Davies MJ, Woolf N, Rowles PM, Pepper J. Morphology of the endothelium over atherosclerotic plaques in human coronary arteries. Heart 1988;60:459-64.

Kiess W, Petzold S, Töpfer M, Garten A, Blüher S, Kapellen T; et al. Adipocytes and adipose tissue. Best Pract Res Clin Endocrinol Metab 2008;22:135-53.

Laufs U, Parhofer KG, Ginsberg HN, Hegele RA. Clinical review on triglycerides. Eur Heart J 2020;41:99-109.

Sebo ZL, Jeffery E, Holtrup B, Rodeheffer MS. A mesodermal fate map for adipose tissue. Development 2018;145(17):dev166801. Disponible en: http://doi:10.1242/dev.166801. Fecha de última visita: 18 de Noviembre del 2021.

Wang QA, Tao C, Jiang L, Shao M, Ye R, Zhu Y; et al. Distinct regulatory mechanisms governing embryonic versus adult adipocyte maturation. Nature Cell Biol 2015;17:1099-11.

Lynes MD, Tseng YH. Deciphering adipose tissue heterogeneity. Ann NY Acad Sci 2018;1411:5-20.

Poulos SP, Dodson MV, Hausman GJ. Cell line models for differentiation: Preadipocytes and adipocytes. Exp Biol Med 2010;235:1185-93.

Suganami T, Ogawa Y. Adipose tissue macrophages: Their role in adipose tissue remodeling. J Leukocyte Biol 2010;88:33-9.

Berry DC, Stenesen D, Zeve D, Graff JM. The developmental origins of adipose tissue. Development 2013;140:3939-49.

Tang QQ, Lane MD. Adipogenesis: From stem cell to adipocyte. Annu Rev Biochem 2012;81:715-36.

Ottaviani E, Malagoli D, Franceschi C. The evolution of the adipose tissue: A neglected enigma. Gen Comp Endocrinol 2011;174:1-4.

Wu J, Boström P, Sparks LM, Ye L, Choi JH, Giang AH; et al. Beige adipocytes are a distinct type of thermogenic fat cell in mouse and human. Cell 2012;150:366-76.

Cinti S. Pink adipocytes. Trends Endocrinol Metab 2018;29:651-66.

Senoo H, Mezaki Y, Fujiwara M. The stellate cell system (vitamin A-storing cell system). Anat Sci Int 2017;92(4):387-455. Disponible en: http://doi:10.1007/s12565-017-0395-9. Fecha de última visita: 22 de Noviembre del 2022.

Alvarenga E, Vasconcellos R, Medrado N. Behavior of adipocytes in the mammary niche during pregnancy and lactation. J Stem Cell Res Ther 2019;5:1-6.

Sato M, Suzuki S, Senoo H. Hepatic stellate cells: Unique characteristics in cell biology and phenotype. Cell Struct Function 2003;28:105-12.

Henry SL, Bensley JG, Wood-Bradley RJ, Cullen-McEwen LA, Bertram JF, Armitage JA. White adipocytes: More than just fat depots. Int J Biochem Cell Biol 2012;44:435-40.

Bolsoni-Lopes A, Alonso-Vale MIC. Lipolysis and lipases in white adipose tissue- An update. Arch Endocrinol Metab 2015;59:335-42.

Cammisotto PG, Bukowiecki LJ. Mechanisms of leptin secretion from white adipocytes. Am J Physiol- Cell Physiol 2002;283:C244-C250.

Vázquez Vela ME, Torres N, Tovar AR. White adipose tissue as endocrine organ and its role in obesity. Arch Med Res 2008;39:715-28.

DePaoli AM. 20 years of leptin: Leptin in common obesity and associated disorders of metabolism. J Endocrinol 2014;223(1): T71-T81. Disponible en: http://doi:10.1530/JOE-14-0258. Fecha de última visita: 22 de Noviembre del 2022.

Al-Suhaimi EA, Shehzad A. Leptin, resistin and visfatin: The missing link between endocrine metabolic disorders and immunity. Eur J Med Res 2013;18:1-13.

Baranova A, Gowder SJ, Schlauch K, Elariny H, Collantes R, Afendy A; et al. Gene expression of leptin, resistin, and adiponectin in the white adipose tissue of obese patients with non-alcoholic fatty liver disease and insulin resistance. Obes Surg 2006;16:1118-25.

Siegrist-Kaiser CA, Pauli V, Juge-Aubry CE, Boss O, Pernin A, Chin WW; et al. Direct effects of leptin on brown and white adipose tissue. J Clin Invest 1997;100:2858-64.

Aygun AD, Gungor S, Ustundag B, Gurgoze MK, Sen Y. Proinflammatory cytokines and leptin are increased in serum of prepubertal obese children. Mediators Inflamm 2005(3):180-3. Disponible en: http://doi:10.1155/MI.2005.180. Fecha de última visita: 22 de Noviembre del 2022.

Frühbeck G. The adipose tissue as a source of vasoactive factors. Curr Med Chem- Cardiovasc Hematol Agents 2004;2:197-208.

Ahren BP, Havel PJ, Pacini G, Cianflone K. Acylation stimulating protein stimulates insulin secretion. Int J Obes Relat Metab Disord 2003;27:1037-43.

White RT, Damm D, Hancock N, Rosen BS, Lowell BB, Usher P; et al. Human adipsin is identical to complement factor D and is expressed at high levels in adipose tissue. J Biol Chem 1992;267:9210-3.

Wu X, Hutson I, Akk AM, Mascharak S, Pham CT, Hourcade DE; et al. Contribution of adipose-derived factor D/adipsin to complement alternative pathway activation: Lessons from lipodystrophy. J Immunol 2018;200:2786-97.

Adeghate E. Visfatin: Structure, function and relation to diabetes mellitus and other dysfunctions. Curr Med Chem 2008;15:1851-62.

Stastny J, Bienertova-Vasku J, Vasku A. Visfatin and its role in obesity development. Diab Metab Synd Clin Res Rev 2012;6:120-4.

Fukuhara A, Matsuda M, Nishizawa M, Segawa K, Tanaka M, Kishimoto K; et al. Visfatin: A protein secreted by visceral fat that mimics the effects of insulin. Science 2005;307(5708):426-30.

Kim SR, Bae SK, Choi KS, Park SY, Jun HO, Lee JY; et al. Visfatin promotes angiogenesis by activation of extracellular signal-regulated kinase. Biochem Biophys Res Comm 2007;357:150-6.

Tan YL, Zheng XL, Tang CK. The protective functions of omentin in cardiovascular diseases. Clin Chim Acta 2015;448:98-106.

de Souza Batista CM, Yang RZ, Lee MJ, Glynn NM, Yu DZ, Pray J; et al. Omentin plasma levels and gene expression are decreased in obesity. Diabetes 2007;56:1655-61.

Timmons JA, Wennmalm K, Larsson O, Walden TB, Lassmann T, Petrovic N; et al. Myogenic gene expression signature establishes that brown and white adipocytes originate from distinct cell lineages. PNAS 2007;104:4401-6.

Cannon B, Nedergaard J. Brown adipose tissue: Function and physiological significance. Physiol Rev 2004;84(1):277-359. Disponibl en: http://doi:10.1152/physrev.00015.2003. Fecha de última visita: 22 de Noviembre del 2022.

Cypess AM, Lehman S, Williams G, Tal I, Rodman D, Goldfine AB; et al. Identification and importance of brown adipose tissue in adult humans. New Engl J Med 2009;360:1509-17.

Klingenberg M, Huang SG. Structure and function of the uncoupling protein from brown adipose tissue. Biochim Biophys Acta- Biomembranes 1999;1415:271-96.

Lee P, Swarbrick MM, Ho KK. Brown adipose tissue in adult humans: A metabolic renaissance. Endocrine Rev 2013;34:413-38.

de Jesus LA, Carvalho SD, Ribeiro MO, Schneider M, Kim SW, Harney JW; et al. The type 2 iodothyronine deiodinase is essential for adaptive thermogenesis in brown adipose tissue. J Clin Invest 2001;108:1379-85.

Puigserver P. Tissue-specific regulation of metabolic pathways through the transcriptional coactivator PGC1-α. Int J Obes 2005;29(1 Suppl):S5-S9.

Becerril S, Gómez-Ambrosi J, Martín M, Moncada R, Sesma P, Burrell MA, Frühbeck G. Role of PRDM16 in the activation of brown fat programming. Relevance to the development of obesity. Histol Histopathol 2013;28(11):1411-25. Disponible en: http://doi:10.14670/HH-28.1411. Fecha de última visita: 20 de Noviembre del 2021.

Iacobellis G, Di Gioia C, Petramala L, Chiappetta C, Serra V, Zinnamosca L, Marinelli C, Ciardi A, De Toma G, Letizia C. Brown fat expresses adiponectin in humans. Int J Endocrinol 2013;2013:126751. Disponible en: http://doi:10.1155/2013/126751. Fecha de última visita: 20 de Noviembre del 2021.

Qiao L, Yoo HS, Bosco C, Lee B, Feng GS, Schaack J; et al. Adiponectin reduces thermogenesis by inhibiting brown adipose tissue activation in mice. Diabetologia 2014;57:1027-36.

Ohta H, Itoh N. Roles of FGFs as adipokines in adipose tissue development, remodeling, and metabolism. Front Endocrinol [Lausanne] 2014;5:18. Disponible en: http://doi:10.3389/fendo.2014.00018. Fecha de última visita: 20 de Noviembre del 2021.

Fisher FM, Kleiner S, Douris N, Fox EC, Mepani RJ, Verdeguer F; et al. FGF21 regulates PGC-1 alpha and browning of white adipose tissues in adaptive thermogenesis. Genes Development 2012; 26:271-81.

Rui L. Brown and beige adipose tissues in health and disease. Compr Physiol 2017;7(4):1281-306. Disponible en: http://doi:10.1002/cphy.c170001. Fecha de última visita: 20 de Noviembre del 2021.

Wu J, Boström P, Sparks LM, Ye L, Choi JH, Giang AH; et al. Beige adipocytes are a distinct type of thermogenic fat cell in mouse and human. Cell 2012;150:366-76.

Sanchez-Gurmaches J, Guertin DA. Adipocyte lineages: Tracing back the origins of fat. Biochim Biophys Acta-Molecular Basis of Disease 2014;1842:340-51.

Chu DT, Gawronska-Kozak B. Brown and brite adipocytes: Same function, but different origin and response. Biochimie 2017;138:102-5.

Kaisanlahti A, Glumoff T. Browning of white fat: Agents and implications for beige adipose tissue to type 2 diabetes. J Physiol Biochem 2019;75:1-10.

Rosenwald M, Wolfrum C. The origin and definition of brite versus white and classical brown adipocytes. Adipocyte 2014;3:4-9.

Shabalina IG, Petrovic N, de Jong JM, Kalinovich AV, Cannon B, Nedergaard J. UCP1 in brite/beige adipose tissue mitochondria is functionally thermogenic. Cell Rep 2013;5:1196-203.

Kleiner S, Douris N, Fox EC, Mepani RJ, Verdeguer F, Wu J; et al. FGF21 regulates PGC-1α and browning of white adipose tissues in adaptive thermogenesis. Genes Development 2012;26:271-81.

Hansen IR, Jansson KM, Cannon B, Nedergaard J. Contrasting effects of cold acclimation versus obesogenic diets on chemerin gene expression in brown and brite adipose tissues. Biochim Biophys Acta- Molecular and Cell Biology of Lipids 2014;1841:1691-9.

Hovey RC, Aimo L. Diverse and active roles for adipocytes during mammary gland growth and function. J Mammary Gland Biol Neoplasia 2010;15:279-90.

Prokesch A, Smorlesi A, Perugini J, Manieri M, Ciarmela P, Mondini E; et al. Molecular aspects of adipoepithelial transdifferentiation in mouse mammary gland. Stem Cells 2014;32:2756-66.

Rudolph MC, McManaman JL, Hunter L, Phang T, Neville MC. Functional development of the mammary gland: Use of expression profiling and trajectory clustering to reveal changes in gene expression during pregnancy, lactation, and involution. J Mammary Gland Biol Neoplasia 2003;8:287-307.

Macias H, Hinck L. Mammary gland development. Wiley Interdiscip Rev Dev Biol 2012;1(4):533-57. Disponible en: http://doi:10.1002/wdev.35. Fecha de última visita: 21 de Noviembre del 2021.

Smith-Kirwin SM, O’Connor DM, Johnston J, de Lancy E, Hassink SG, Funanage VL. Leptin expression in human mammary epithelial cells and breast milk. J Clin Endocrinol Metab 1998;83:1810-1813.

Gonçalves CA, Leite MC, Guerra MC. Adipocytes as an important source of serum S100B and possible roles of this protein in adipose tissue. Cardiovasc Psychiatry Neurol 2010;2010:790431. Disponible en: http://doi:10.1155/2010/790431. Fecha de última visita: Fecha de última visita: 21 de Noviembre del 2021.

Pavlova T, Spacil Z, Vidova V, Zlamal F, Cechova E, Hodicka Z, Bienertova-Vasku J. Adipophilin and perilipin 3 positively correlate with total lipid content in human breast milk. Sci Rep 2020;10(1):360. Disponible en: http://doi:10.1038/s41598-019-57241-w. Fecha de última visita: 21 de Noviembre del 2021.

Sztalryd C, Brasaemle DL. The perilipin family of lipid droplet proteins: Gatekeepers of intracellular lipolysis. Biochim Biophys Acta- Molecular and Cell Biology of Lipids 2017;1862:1221-32.

Geerts A. On the origin of stellate cells: mesodermal, endodermal or neuro-ectodermal? J Hepatol 2004;40:331-4.

Sato M, Suzuki S, Senoo H. Hepatic stellate cells: Unique characteristics in cell biology and phenotype. Cell Struct Funct 2003;28:105-12.

Higashi T, Friedman SL, Hoshida Y. Hepatic stellate cells as key target in liver fibrosis. Adv Drug Deliv Rev 2017;121:27-42.

Moreira RK. Hepatic stellate cells and liver fibrosis. Arch Pathol Lab Med 2007;131(11):1728-34. Disponible en: http://doi:10.5858/2007-131-1728-HSCALF. Fecha de última visita: 21 de Noviembre del 2021.

Tsukamoto H. Adipogenic phenotype of hepatic stellate cells. Alcoholism Clin Exp Res 2005;29(Suppl):S132-S133.

Shen C, Zhao CY, Wang W, Wang YD, Sun H, Cao W; et al. The relationship between hepatic resistin overexpression and inflammation in patients with nonalcoholic steatohepatitis. BMC Gastroenterol 2014;14:1-8.

Bertolani C, Sancho-Bru P, Failli P, Bataller R, Aleffi S, DeFranco R; et al. Resistin as an intrahepatic cytokine: Overexpression during chronic injury and induction of proinflammatory actions in hepatic stellate cells. Am J Pathol 2006; 169:2042-53.

Ding X, Saxena NK, Lin S, Xu A, Srinivasan S, Anania FA. The roles of leptin and adiponectin: A novel paradigm in adipocytokine regulation of liver fibrosis and stellate cell biology. Am J Pathol 2005;166:1655-69.

Shafiei MS, Shetty S, Scherer PE, Rockey DC. Adiponectin regulation of stellate cell activation via PPARγ-dependent and-independent mechanisms. Am J Pathol 2011;178:2690-9.

Krautbauer S, Wanninger J, Eisinger K, Hader Y, Beck M, Kopp A; et al. Chemerin is highly expressed in hepatocytes and is induced in non-alcoholic steatohepatitis liver. Exp Mol Pathol 2013;95:199-205.

Tsukamoto H. Cytokine regulation of hepatic stellate cells in liver fibrosis. Alcoholism Clin Exp Res 1999;23;911-6.

Liang NL, Men R, Zhu Y, Yuan C, Wei Y, Liu X, Yang L. Visfatin: An adipokine activator of rat hepatic stellate cells. Mol Med Rep 2015;11:1073-8.

Tilg H. Cytokines and liver diseases. Canad J Gastroenterol 2001;15:661-8.

Scherer PE. Adipose tissue: From lipid storage compartment to endocrine organ. Diabetes 2006;55:1537-45.

Coelho M, Oliveira T, Fernandes R. Biochemistry of adipose tissue: An endocrine organ. Arch Med Sci 2013; 9(2):191-200. Disponible en: http://doi:10.5114/aoms.2013.33181. Fecha de última visita: 21 de Noviembre del 2021.

Bulcão C, Ferreira SR, Giuffrida F, Ribeiro-Filho FF. The new adipose tissue and adipocytokines. Curr Diab Rev 2006; 2:19-28.

Zhang F, Chen Y, Heiman M, DiMarchi R. Leptin: Structure, function and biology. Vitamins Hormones 2005;71:345-72.

Blundell JE, Goodson S, Halford JCG. Regulation of appetite: Role of leptin in signaling systems for drive and satiety. International J Obes 2001;25(1 Suppl): S29-S34.

Pérez-Pérez A, Sánchez-Jiménez F, Vilariño-García T, Sánchez-Margalet V. Role of leptin in inflammation and viceversa. Int J Mol Sci 2020;21(16): 5887. Disponible en: http://doi:10.3390/ijms21165887. Fecha de última visita: 22 de Noviembre del 2021.

Sowers JR. Endocrine functions of adipose tissue: Focus on adiponectin. Clin Corner 2008;9:32-40.

Nigro E, Scudiero O, Monaco ML, Palmieri A, Mazzarella G, Costagliola C, Bianco A, Daniele A. New insight into adiponectin role in obesity and obesity-related diseases. Biomed Res Int 2014; 2014:658913. Disponible en: http://doi:10.1155/2014/658913. Fecha de última visita: 22 de Noviembre del 2021.

Buechler C, Wanninger J, Neumeier M. Adiponectin receptor binding proteins- Recent advances in elucidating adiponectin signalling pathways. FEBS Lett 2010;584:4280-6.

Balsan GA, Vieira JLDC, Oliveira AMD, Portal VL. Relationship between adiponectin, obesity and insulin resistance. Rev Assoc Méd Brasil 2015;61:72-80.

Ohashi K, Ouchi N, Matsuzawa Y. Anti-inflammatory and anti-atherogenic properties of adiponectin. Biochimie 2012;94:2137-42.

Adeghate E. An update on the biology and physiology of resistin. Cell Mol Life Sci 2004;61:2485-96.

Burnett MS, Lee CW, Kinnaird TD, Stabile E, Durrani S, Dullum MK; et al. The potential role of resistin in atherogenesis. Atherosclerosis 2005;182:241-8.

Bokarewa M, Nagaev I, Dahlberg L, Smith U, Tarkowski A. Resistin, an adipokine with potent proinflammatory properties. J Immunol 2005;174:5789-95.

Pine GM, Batugedara HM, Nair MG. Here, there and everywhere: Resistin-like molecules in infection, inflammation, and metabolic disorders. Cytokine 2018;110: 442-51.

Banerjee RR, Lazar MA. Dimerization of resistin and resistin-like molecules is determined by a single cysteine. J Biol Chem 2001;276:25970-3.

Pond CM. Adipose tissue and the immune system. Prostaglandins Leukot Essent Fatty Acids 2005;73:17-30.

Cianflone K, Maslowska M, Sniderman AD. Acylation stimulating protein (ASP), an adipocyte autocrine: New directions. Semin Cell Dev Biol 1999;10:31-41.

Cianflone KM, Maslowska MH, Sniderman AD. Impaired response of fibroblasts from patients with hyperapobetalipoproteinemia to acylation-stimulating protein. J Clin Invest 1990; 85:722-30.

Cawthorn WP, Sethi JK. TNF-α and adipocyte biology. FEBS Lett 2008;582: 117-31.

Kern PA, Ranganathan S, Li C, Wood L, Ranganathan G. Adipose tissue tumor necrosis factor and interleukin-6 expression in human obesity and insulin resistance. Am J Physiol Endocrinol Metab 2001;280(5):E745-51. Disponible en: http://doi:10.1152/ajpendo.2001.280.5.E745. Fecha de última visita: 22 de Noviembre del 2021.

Lutosławska G. Interleukin-6 as an adipokine and myokine: The regulatory role of cytokine in adipose tissue and skeletal muscle metabolism. Human Movement 2012;13:372-9.

Fried SK, Bunkin DA, Greenberg AS. Omental and subcutaneous adipose tissues of obese subjects release interleukin-6: Depot difference and regulation by glucocorticoid. J Clin Endocrinol Metab 1998;83:847-50.

Senn JJ, Klover PJ, Nowak IA, Mooney RA. Interleukin-6 induces cellular insulin resistance in hepatocytes. Diabetes 2002;51:3391-9.

Engeli S, Negrel R, Sharma AM. Physiology and pathophysiology of the adipose tissue renin-angiotensin system. Hypertension 2000;35:1270-7.

Kalupahana NS, Moustaid-Moussa N. The adipose tissue renin-angiotensin system and metabolic disorders: A review of molecular mechanisms. Crit Rev Biochem Mol Biol 2012;47:379-90.

Giacchetti G, Faloia E, Mariniello B, Sardu C, Gatti C, Camilloni MA; et al. Overexpression of the renin-angiotensin system in human visceral adipose tissue in normal and overweight subjects. Am J Hypertension 2002;15:381-8.

Massiéra F, Bloch-Faure M, Ceiler D, Murakami K, Fukamizu A, Gasc JM; et al. Adipose angiotensinogen is involved in adipose tissue growth and blood pressure regulation. FASEB J 2001;15:1-25.

Kaji H. Adipose tissue‐derived plasminogen activator inhibitor‐1 function and regulation. Comp Physiol 2011;6:1873-96.

Crandall DL, Quinet EM, El Ayachi S, Hreha AL, Leik CE, Savio DA; et al. Modulation of adipose tissue development by pharmacological inhibition of PAI-1. Arteriosc Thromb Vasc Biol 2006;26:2209-15.

Sonoli SS, Shivprasad S, Prasad CV, Patil AB, Desai PB, Somannavar MS. Visfatin- A review. Eur Rev Med Pharmacol Sci 2011;15:9-14.

Sethi JK, Vidal-Puig A. Visfatin: The missing link between intra-abdominal obesity and diabetes? Trends Mol Med 2005;11:344-7.

Yang RZ, Lee MJ, Hu H, Pray J, Wu HB, Hansen BC; et al. Identification of omentin as a novel depot-specific adipokine in human adipose tissue: Possible role in modulating insulin action. Am J Physiol Endocrinol Metab 2006; 290:E1253-E1261.

Cai RC, Wei L, JZ D, Yu HY, Bao YQ, Jia WP. Expression of omentin in adipose tissues in obese and type 2 diabetic patients. Zhonghua Yi Xue Za Zhi 2009;89:381-4.

Rayalam S, Della-Fera MA, Krieg PA, Cox CM, Robins A, Baile CA. A putative role for apelin in the etiology of obesity. Biochem Biophys Res Comm 2008;368:815-9.

Bertrand C, Valet P, Castan-Laurell I. Apelin and energy metabolism. Front Physiol 2015;6:115. Disponible en: http://doi:10.3389/fphys.2015.00115. Fecha de última visita: 22 de Noviembre del 2021.

Kunduzova O, Alet N, Delesque-Touchard N, Millet L, Castan-Laureli I, Muller C; et al. Apelin/APJ signaling system: A potential link between adipose tissue and endothelial angiogenic processes. FASEB J 2008;22:4146-53.

Klaus S. Adipose tissue as a regulator of energy balance. Curr Drug Targets 2004;5:241-50.

Imam SK. White adipose tissue: Beyond fat storage. Obesity [Editores: Ahmad S, Imam S]. Springer. Cham: 2016. Disponible en: https://doi.org/10.1007/978-3-319-19821-7_1. Fecha de última visita: 22 de Noviembre del 2021.

Ahmadian M, Duncan RE, Jaworski K, Sarkadi-Nagy E, Sook Sul H. Triacylglycerol metabolism in adipose tissue. Future Lipidol 2007;2:229-37.

Bolsoni-Lopes A, Alonso-Vale MIC. Lipolysis and lipases in white adipose tissue- An update. Arch Endocrinol Metab 2015;59:335-42.

Bartness TJ, Liu Y, Shrestha YB, Ryu V. Neural innervation of white adipose tissue and the control of lipolysis. Front Neuroendocrinol 2014;35:473-93.

Sbarbati A, Accorsi D, Benati D, Marchetti L, Orsini G, Rigotti G, Panettiere P. Subcutaneous adipose tissue classification. Eur J Histochem 2010;54(4):e48. Disponible en: http://doi:10.4081/ejh.2010.e48. Fecha de última visita: 22 de Noviembre del 2021.

Mårin P, Andersson B, Ottosson M, Olbe L, Chowdhury B, Kvist H; et al. The morphology and metabolism of intraabdominal adipose tissue in men. Metabolism 1992;41:1242-8.

Shuster A, Patlas M, Pinthus JH, Mourtzakis M. The clinical importance of visceral adiposity: A critical review of methods for visceral adipose tissue analysis. Brit J Radiol 2012;85:1-10.

Coffin A, Boulay-Coletta I, Sebbag-Sfez D, Zins M. Radioanatomy of the retroperitoneal space. Diagnost Intervention Imaging 2015;96:171-86.

Iacobellis G, Corradi D, Sharma AM. Epicardial adipose tissue: Anatomic, biomolecular and clinical relationships with the heart. Nature Clin Pract Cardiovasc Med 2005;2:536-43.

McLaughlin T, Lamendola C, Liu A, Abbasi F. Preferential fat deposition in subcutaneous versus visceral depots is associated with insulin sensitivity. J Clin Endocrinol Metab 2011;96:E1756-E1760.

Kern PA, Finlin BS, Zhu B, Rasouli N, McGehee Jr RE, Westgate PM, Dupont-Versteegden EE. The effects of temperature and seasons on subcutaneous white adipose tissue in humans: Evidence for thermogenic gene induction. J Clin Endocrinol Metab 2014;99:E2772-E2779.

Matsuzawa Y. Review: The role of fat topology in the risk of disease. Int J Obes 2008;32(7 Suppl):S83-S92.

Blüher M. Importance of estrogen receptors in adipose tissue function. Mol Metab 2013;2(3):130-2. Disponible en: http://doi:10.1016/j.molmet.2013.07.001. Fecha de última visita: 22 de Noviembre del 2021.

McTernan PG, Anwar A, Eggo MC, Barnett AH, Stewart PM, Kumar S. Gender differences in the regulation of P450 aromatase expression and activity in human adipose tissue. Int J Obes 2000; 24:875-81.

Karpe F, Pinnick KE. Biology of upper-body and lower-body adipose tissue- link to whole-body phenotypes. Nat Rev Endocrinol 2015;11:90-100. Disponible en: http://doi:10.1038/nrendo.2014.185. Fecha de última visita: 23 de Noviembre del 2021.

Lee JJ, Pedley A, Therkelsen KE, Hoffmann U, Massaro JM, Levy D, Long MT. Upper body subcutaneous fat is associated with cardiometabolic risk factors. Am J Med 2017;130:958-66.

Manolopoulos KN, Karpe F, Frayn KN. Gluteofemoral body fat as a determinant of metabolic health. Int J Obes 2010;34:949-59. Disponible en: http://doi:10.1038/ijo.2009.286. Fecha de última visita: 23 de Noviembre del 2021.

Dieudonne MN, Pecquery R, Boumediene A, Leneveu MC, Giudicelli Y. Androgen receptors in human preadipocytes and adipocytes: Regional specificities and regulation by sex steroids. Am J Physiol Cell Physiol 1998;274:C1645-C1652.

O’Reilly MW, House PJ, Tomlinson JW. Understanding androgen action in adipose tissue. J Steroid Biochem Mol Biol 2014;143:277-84.

Batra A, Siegmund B. The role of visceral fat. Dig Dis 2012;30:70-4.

Jensen MD. Is visceral fat involved in the pathogenesis of the metabolic syndrome? Human Model Obesity 2006; 14(2 Suppl):S20-S24.

Neeland IJ, Ross R, Després JP, Matsuzawa Y, Yamashita S, Shai I; et al; for the International Chair on Cardiometabolic Risk Working Group on Visceral Obesity of the International Atherosclerosis Society. Visceral and ectopic fat, atherosclerosis, and cardiometabolic disease: A position statement. Lancet Diabetes Endocrinol 2019;7(9):715-25. Disponible en: http://doi:10.1016/S2213-8587(19)30084-1. Fecha de última visita: 23 de Noviembre del 2021.

Shulman GI. Ectopic fat in insulin resistance, dyslipidemia, and cardiometabolic disease. New Engl J Med 2014;371:1131-41.

Shimabukuro M, Kozuka C, Taira SI, Yabiku K, Dagvasumberel M, Ishida M; et al. Ectopic fat deposition and global cardiometabolic risk: New paradigm in cardiovascular medicine. J Med Invest 2013;60:1-14.

Ibrahim MM. Subcutaneous and visceral adipose tissue: Structural and functional differences. Obes Rev 2010;11:11-8.

Tchoukalova Y, Koutsari C, Jensen M. Committed subcutaneous preadipocytes are reduced in human obesity. Diabetologia 2007;50:151-7.

Suárez-Cuenca JA, De La Peña-Sosa G, De La Vega-Moreno K, Banderas-Lares DZ, Salamanca-García M, Martínez-Hernández JE; et al. Enlarged adipocytes from subcutaneous vs. visceral adipose tissue differentially contribute to metabolic dysfunction and atherogenic risk of patients with obesity. Sci Rep 2021;11(1):1831. Disponible en: http://doi:10.1038/s41598-021-81289-2. Fecha de última visita: 23 de Noviembre del 2021.

Andersen E, Ingerslev LR, Fabre O, Donkin I, Altıntaş A, Versteyhe S; et al. Preadipocytes from obese humans with type 2 diabetes are epigenetically reprogrammed at genes controlling adipose tissue function. Int J Obes 2019;43:306-18.

Russo L, Lumeng CN. Properties and functions of adipose tissue macrophages in obesity. Immunology 2018;155:407-17.

Bellini E, Grieco MP, Raposio E. A journey through liposuction and liposculture. Ann Med Surgery 2017;24:53-60.

Mauer MM, Harris RB, Bartness TJ. The regulation of total body fat: Lessons learned from lipectomy studies. Neurosci Biobehav Rev 2001;25:15-28.

Seretis K, Goulis DG, Koliakos G, Demiri E. Short-and long-term effects of abdominal lipectomy on weight and fat mass in females: A systematic review. Obes Surg 2015;25:1950-8.

Klein S, Fontana L, Young VL, Coggan AR, Kilo C, Patterson BW, Mohammed BS. Absence of an effect of liposuction on insulin action and risk factors for coronary heart disease. N Engl J Med 2004;350:2549-57.

Rinomhota AS, Bulugahapitiya DU, French SJ, Caddy CM, Griffiths RW, Ross RJ. Women gain weight and fat mass despite lipectomy at abdominoplasty and breast reduction. Eur J Endocrinol 2008;158(3):349-52. Disponible en: http://doi:10.1530/EJE-07-0852. Fecha de última visita: 23 de Noviembre del 2021.

le Roux CW, Heneghan HM. Bariatric surgery for obesity. Medical Clinics 2018; 102:165-82.

Lee GK, Cha YM. Cardiovascular benefits of bariatric surgery. Trends Cardiovasc Med 2016;26:280-9.

Appachi S, Kashyap SR. “Adiposopathy” and cardiovascular disease: The benefits of bariatric surgery. Curr Op Cardiol 2013;28:540-6.

Thorne A, Lonnqvist F, Apelman J, Hellers G, Arner P. A pilot study of longterm effects of a novel obesity treatment: Omentectomy in connection with adjustable gastric banding. Int J Obes Relat Metab Disord 2002;26:193-9.

Tran TT, Yamamoto Y, Gesta S, Kahn CR. Beneficial effects of subcutaneous fat transplantation on metabolism. Cell Metab 2008;7:410-20.

Escobar Vega H, Bezares Ramos I, Lugo Alonso J, Expósito Jalturin A, León Rodríguez Y. Cambios en las fracciones lipídicas séricas tras la liposucción. RCAN Rev Cubana Aliment Nutr 2014; 24:249-59.

Escobar Vega H, Miquet Romero LM, Expósito Jalturín A, Espinosa Romero G. Cambios antropométricos tras la liposucción. RCAN Rev Cubana Aliment Nutr 2015;25:123-31.

Escobar Vega H, Miquet Romero LM, Expósito Jalturin A, Espinosa Romero GE. Cambios en la composición corporal tras tratamiento de la lipodistrofia abdominal mediante liposucción. RCAN Rev Cubana Aliment Nutr 2018;28:55-66.

Escobar Vega H, Miquet Romero LM, Hernández Solarte FL. Cambios antropométricos en pacientes sujetos a dermolipectomía abdominal combinada con liposucción de los flancos anterolaterales. RCAN Rev Cubana Aliment Nutr 2020;30:131-40.

Sudhakar M, Winfred SB, Meiyazhagan G, Venkatachalam DP. Mechanisms contributing to adverse outcomes of COVID-19 in obesity. Mol Cell Biochem 2022;477:1155-93.

Kamyari N, Soltanian AR, Mahjub H, Moghimbeigi A. Diet, nutrition, obesity, and their implications for COVID-19 mortality: Development of a marginalized two-part model for semicontinuous data. JMIR Public Health Surveill 2021;7(1):e22717. Disponible en: http://doi:10.2196/22717. Fecha de última visita: 23 de Noviembre del 2021.

Enlaces refback

  • No hay ningún enlace refback.




Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial 4.0 Internacional.