Sobre los alimentos con actividad hipolipemiante

Claudia María Ramírez Botero, María Orfilia Román Morales

Texto completo:

PDF

Resumen

La determinación de los lípídos circulantes en la sangre se ha constituido en uno de los métodos bioquímicos más veraces de evaluación del riesgo de aparición de enfermedades crónicas como la arterioesclerosis, la hipertensión arterial, y las afecciones cardio- y cerebro-vasculares, entre otras. Las alteraciones de cualquiera de las fracciones componentes del perfil lipídico conducen a las dislipidemias: uno de los eventos moleculares subyacentes en las enfermedades cardiovasculares (ECV) que suelen causar 17 millones de muertes anualmente a nivel mundial. Se han desarrollado terapias farmacológicas para el tratamiento medicamentoso de las dislipidemias. También se han explorado alternativas nutricionales para el tratamiento de las dislipidemias. Entre estas alternativas se encuentran fitoquímicos con actividad hipolipemiante que son capaces de disminuir las concentraciones séricas de LDL a la vez que incrementan las de las HDL a través de diferentes mecanismos. Dentro de estos hipolipemiantes naturales se encuentran la fibra dietética, los ácidos grasos monoinsaturados (como el ácido oleico) y los poliinsaturados (especialmente los pertenecientes a la serie w3); los fitoesteroles y los antioxidantes (entre ellos los polifenoles y los flavonoides). La presente revisión explora las propiedades bioquímicas de los distintos agentes hipolipemiantes citados en la literatura consultada y los posibles mecanismos de la acción hipolipemiante de los mismos. Se espera que esta revisión contribuya a un uso más extendido de los agentes naturales hipolipemiantes en la práctica nutricional, así como a una evaluación exhaustiva de los beneficios de su uso.

Palabras clave

Actividad hipolipemiante; Perfil lipídico; Fibra dietética; Fitoquímicos; Fitoesteroles; Antioxidantes; Ácidos grasos omega 3

Referencias

Olson RE. Discovery of the lipoproteins, their role in fat transport and their significance as risk factors. J Nutr 1998; 128(2 Suppl):S439-S443.

Jackson RL, Morrisett JD, Gotto Jr AM. Lipoprotein structure and metabolism. Physiol Rev 1976;56:259-316.

Smith LC, Pownall HJ, Gotto Jr AM. The plasma lipoproteins: Structure and metabolism. Annu Rev Biochem 1978; 47:751-77.

Gofman JW, Lindgren FT, Elliott H. Ultracentrifugal studies of lipoproteins of human serum. J Biol Chem 1949;179:973-9.

Alaupovic P, Sanbar SS, Furman RH, Sullivan ML, Walraven SL. Studies of the composition and structure of serum lipoproteins. Isolation and characterization of very high density lipoproteins of human serum. Biochemistry 1966;5:4044-53.

Gustafson A, Alaupovic P, Furman RH. Studies of the composition and structure of serum lipoproteins: Isolation, purification, and characterization of very low density lipoproteins of human serum. Biochemistry 1965;4:596-605.

Gotto AM. The Louis F. Bishop Lecture: Evolving concepts of dyslipidemia, atherosclerosis, and cardiovascular disease. J Am Coll Cardiol 2005;46: 1219-24.

Cruz Gilarte Y. Sobre las asociaciones entre los lípidos séricos y el riesgo cardiovascular. RCAN Rev Cubana Aliment Nutr 2018;28:125-51.

Dujovne CA, Harris WS. The pharmacological treatment of dyslipidemia. Annu Rev Pharmacol Toxicol 1989;29:265-88.

Reiner Ž. Combined therapy in the treatment of dyslipidemia. Fundamental Clin Pharmacol 2010;24:19-28.

Tiwari V, Khokhar M. Mechanism of action of anti-hypercholesterolemia drugs and their resistance. Eur J Pharmacol 2014;741:156-70.

PEMEX Petróleos Mexicanos, Sociedad Mexicana de Nutrición y Endocrinología, Asociación Mexicana para la Prevención de la Aterosclerosis, Colegio Mexicano de Nutriólogos, Sociedad de Hipertensión Arterial de México, Sociedad Mexicana de Cardiología, Consejo Mexicano de Cardiología. Norma Oficial Mexicana NOM-037-SSA2-2002 para la prevención, tratamiento y control de las dislipidemias. Disponible en: http://www.dof.gob.mx/normasOficiales/4802/salud/salud.html. Fecha de última visita: 6 de Diciembre del 2017.

Centro Nacional de Programas Preventivos y control de Enfermedades. Programa de Salud en el adulto y en el Anciano. Secretaría de Salud. Guía de Tratamiento Farmacológico de Dislipidemias para el primer nivel de atención. Rev Mex Cardiol 2013; 24(3):103-29. Disponible en: http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S0188-21982013000300001&lng=es. Fecha de última visita: 8 de Diciembre del 2017.

Suhaila M. Functional foods against metabolic syndrome (obesity, diabetes, hypertension and dyslipidemia) and cardiovasular disease. Trends Food Sci Technol 2014;35:114-28.

Nijjar PS, Burke FM, Bloesch A, Rader DJ. Role of dietary supplements in lowering low-density lipoprotein cholesterol: A review. J Clin Lipidol 2010;4:248-58.

Llanes Echevarría JR. Alimentos hipolipemiantes que mejoran la salud cardiovascular. Rev Cubana Cardiol Cir Cardiovasc 2017;23(4):0-0. Disponible en: http://www.medigraphic.com/pdfs/cubcar/ccc-2017/ccc174j.pdf. Fecha de última visita: 17 de Diciembre del 2017.

Duester KC. Avocados- A look beyond basic nutrition for one of nature's whole foods. Nutr Today 2000;35:151-7.

Dreher ML, Davenport AJ. Hass avocado composition and potential health effects. Crit Rev Food Sci Nutr 2013;53:738-50.

Marlett JA, Cheung TF. Database and quick methods of assessing typical dietary fiber intakes using data for 228 commonly consumed foods. J Am Diet Assoc 1997;97:1139-48,1151.

Duester KC. Avocado fruit is a rich source of beta-sitosterol. J Acad Nutr Diet 2001;101:404-5.

Lu QY, Zhang Y, Wang Y, Wang D, Lee RP, Gao K, Byrns R, Heber D. California Hass avocado: Profiling of carotenoids, tocopherol, fatty acid, and fat content during maturation and from different growing areas. J Agric Food Chem 2009;57:10408-13.

Grant WC. Influence of avocados on serum cholesterol. Proc Soc Exp Biol Med 1960;104:45-7.

Colquhoun DM, Moores D, Somerset SM, Humphries JA. Comparison of the effects on lipoproteins and apolipoproteins of a diet high in monounsaturated fatty acids, enriched with avocado, and a high-carbohydrate diet. Am J Clin Nutr 1992;56:671-7.

Alvizouri-Muñoz M, Carranza-Madrigal J, Herrera-Abarca JE, Chavez-Carbajal F, Amezcua-Gastelum JL. Effects of avocado as a source of monounsaturated fatty acids on plasma lipid levels. Arch Med Res 1992;23:163-7.

Lerman-Garber I, Ichazo-Cerro S, Zamora-González J, Cardoso-Saldaña G, Posadas-Romero C. Effect of a high-monounsaturated fat diet enriched with avocado in NIDDM patients. Diabetes Care 1994;17:311-5.

Carranza J, Alvizouri M, Alvarado MR, Chávez F, Gómez M, Herrera JE. Effects of avocado on the level of blood lipids in patients with phenotype II and IV dyslipidemias. Arch Inst Cardiol Mex 1995;65:342-8.

Carranza-Madrigal J, Herrera-Abarca JE, Alvizouri-Muñoz M, Alvarado-Jimenez MR, Chavez-Carbajal F. Effects of a vegetarian diet vs. a vegetarian diet enriched with avocado in hypercholesterolemic patients. Arch Med Res 1997;28:537-41.

López Ledesma R, Frati Munari AC, Hernández Domínguez BC, Cervantes Montalvo S, Hernández Luna MH, Juárez C, Morán Lira S. Monounsaturated fatty acid (avocado) rich diet for mild hypercholesterolemia. Arch Med Res 1996;27:519-23.

Pieterse Z, Jerling JC, Oosthuizen W, Kruger HS, Hanekom SM, Smuts CM, Schutte AE. Substitution of high monounsaturated fatty acid avocado for mixed dietary fats during an energy-restricted diet: effects on weight loss, serum lipids, fibrinogen, and vascular function. Nutrition 2005;21:67-75.

Peou S, Milliard-Hasting B, Shah SA. Impact of avocado-enriched diets on plasma lipoproteins: A meta-analysis. J Clin Lipidol 2016;10:161-71.

Werman MJ, Neeman I. Avocado oil production and chemical characteristics. J Am Oil Chemist Soc 1987;64:229-32.

dos Santos MA, Alicieo TV, Pereira CM, Ramis‐Ramos G, Mendonça CR. Profile of bioactive compounds in avocado pulp oil: Influence of the drying processes and extraction methods. J Am Oil Chemist Soc 2014;91:19-27.

Salazar MJ, El Hafidi M, Pastelin G, Ramírez-Ortega MC, Sánchez-Mendoza MA. Effect of an avocado oil-rich diet over an angiotensin II-induced blood pressure response. J Ethnopharmacol 2005;98:335-8.

Leite JJG, Brito ÉHS, Cordeiro RA, Brilhante RSN, Sidrim JJC, Bertini LM; et al. Chemical composition, toxicity and larvicidal and antifungal activities of Persea americana (avocado) seed extracts. Rev Soc Bras Med Trop 2009; 42:110-3.

Dabas D, Shegog RM, Ziegler GR, Lambert DJ. Avocado (Persea americana) seed as a source of bioactive phytochemicals. Curr Pharmaceut Design 2013;19:6133-40.

Bora PS, Narain N, Rocha RV, Paulo MQ. Characterization of the oils from the pulp and seeds of avocado (cultivar: Fuerte) fruits. Grasas Aceites 2001;52(3-4):171-4. Disponible en: http://grasasyaceites.revistas.csic.es/index.php/grasasyaceites/article/view/353. Fecha de última visita: 17 de Diciembre del 2017.

Imafidon KE, Amaechina FC. Effects of aqueous seed extract of Persea americana Mill. (avocado) on blood pressure and lipid profile in hypertensive rats. Adv Biol Res 2010;4:116-21.

Pahua-Ramos ME, Ortiz-Moreno A, Chamorro-Cevallos G, Hernández-Navarro MD, Garduño-Siciliano L, Necoechea-Mondragón H, Hernández-Ortega M. Hypolipidemic effect of avocado (Persea americana Mill) seed in a hypercholesterolemic mouse model. Plant Foods Human Nutr 2012;67:10-6.

Braverman JBS. Citrus products: Chemical composition and chemical technology. Interscience Publishers Ltd. London [England]: 1949. Pp 1-424.

Marín FR, Soler-Rivas C, Benavente-García O, Castillo J, Pérez-Alvarez JA. By-products from different citrus processes as a source of customized functional fibres. Food Chem 2007;100:736-41.

Agócs A, Nagy V, Szabó Z, Márk L, Ohmacht R, Deli J. Comparative study on the carotenoid composition of the peel and the pulp of different citrus species. Innovat Food Sci Emerg Technol 2007;8:390-4.

Gattuso G, Barreca D, Gargiulli C, Leuzzi U, Caristi C. Flavonoid composition of citrus juices. Molecules 2007;12:1641-73.

Kurowska EM, Spence JD, Jordan J, Wetmore S, Freeman DJ, Piché LA, Serratore P: HDL-cholesterol-raising effect of orange juice in subjects with hypercholesterolemia. Am J ClinNutr 2000;72:1095-100.

Aptekmann NP, Cesar TB. Long-term orange juice consumption is associated with low LDL-cholesterol and apolipoprotein B in normal and moderately hypercholesterolemic subjects. Lipids Health Dis 2013;12:119-119. Disponible en: https://lipidworld.biomedcentral.com/articles/10.1186/1476-511X-12-119. Fecha de última visita: 18 de Diciembre del 2017.

O’Neil CE, Nicklas TA, Rampersaud GC, Fulgoni III VL. 100% orange juice consumption is associated with better diet quality, improved nutrient adequacy, decreased risk for obesity, and improved biomarkers of health in adults: National Health and Nutrition Examination Survey, 2003-2006. Nutr J 2012;11:107-107. Disponible en: https://nutritionj.biomedcentral.com/articles/10.1186/1475-2891-11-107. Fecha de última visita: 18 de Diciembre del 2017.

Kay RM, Truswell AS. Effect of citrus pectin on blood lipids and fecal steroid excretion in man. Am J Clin Nutr 1977; 30:171-5.

Lukito W. Candidate foods in the Asia-Pacific region for cardiovascular protection: Nuts, soy, lentils and tempe. Asia Pac J Clin Nutr 2001;10:128-33.

Chen KI, Erh MH, Su NW, Liu WH, Chou CC, Cheng KC. Soyfoods and soybean products: From traditional use to modern applications. Appl Microbiol Biotechnol 2012;96:9-22.

Golbitz P. Traditional soyfoods: Processing and products. J Nutr 1995; 125(3 Suppl):S570-S572.

Messina M, Messina VL. Exploring the soyfood controversy. Nutr Today 2013; 48:68-75.

Shimazu T, Kuriyama S, Hozawa A, Ohmori K, Sato Y, Nakaya N; et al. Dietary patterns and cardiovascular disease mortality in Japan: A prospective cohort study. Int J Epidemiol 2007;36:600-9.

Reinwald S, Akabas SR, Weaver CM. Whole versus the piecemeal approach to evaluating soy. J Nutr 2010;140(Suppl): S2335-S2343.

Jenkins DJ, Mirrahimi A, Srichaikul K, Berryman CE, Wang L, Carleton A; et al. Soy protein reduces serum cholesterol by both intrinsic and food displacement mechanisms. J Nutr 2010;140(Suppl): S2302-S2311.

Anderson JW, Bush HM. Soy protein effects on serum lipoproteins: A quality assessment and meta-analysis of randomized, controlled studies. J Am Coll Nutr 2011;30:79-91.

Harland JI, Haffner TA. Systematic review, meta-analysis and regression of randomised controlled trials reporting an association between an intake of circa 25 g soya protein per day and blood cholesterol. Atherosclerosis 2008;200:13-27.

Zhan S, Ho SC. Meta-analysis of the effects of soy protein containing isoflavones on the lipid profile. Am J Clin Nutr 2005;81:397-408.

Dong JY, Tong X, Wu ZW, Xun PC, He K, Qin LQ. Effect of soya protein on blood pressure: A meta-analysis of randomised controlled trials. Br J Nutr 2011;106:317-26.

Ruscica M, Pavanello C, Gandini S, Gomaraschi M, Vitali C, Macchi C; et al. Effect of soy on metabolic syndrome and cardiovascular risk factors: A randomized controlled trial. Eur J Nutr 2018;57:499-511. Disponible en: http://doi:10.1007/s00394-016-1333-7. Fecha de última visita: 18 de Octubre del 2017.

Yan Z, Zhang X, Li C, Jiao S, Dong W. Association between consumption of soy and risk of cardiovascular disease: A meta-analysis of observational studies. Eur J Prev Cardiol 2017;24:735-47.

Lou D, Li Y, Yan G, Bu J, Wang H. Soy consumption with risk of coronary heart disease and stroke: A meta-analysis of observational studies. Neuroepidemiol 2016;46:242-52. Disponible en: http://doi:10.1159/000444324. Fecha de última visita: 17 de Marzo del 2017.

Karupaiah T, Chuah KA, Chinna K, Matsuoka R, Masuda Y, Sundram K, Sugano M. Comparing effects of soybean oil- and palm olein-based mayonnaise consumption on the plasma lipid and lipoprotein profiles in human subjects: A double-blind randomized controlled trial with cross-over design. Lipids Health Dis 2016;15:131-131. Disponible en: https://lipidworld.biomedcentral.com/articles/10.1186/s12944-016-0301-9. Fecha de última visita: 14 de Diciembre del 2017.

Duke J. Handbook of legumes of world economic importance. Springer Science & Business Media. New York: 2012.

Tharanathan RN, Mahadevamma S. Grain legumes- A boon to human nutrition. Trends Food Sci Technol 2003;14:507-18.

Chick H. Nutritive value of vegetable proteins and its enhancement by admixture. Brit J Nutr 1951;5:261-5.

de Almeida Costa GE, da Silva Queiroz-Monici K, Reis SMPM, de Oliveira AC. Chemical composition, dietary fibre and resistant starch contents of raw and cooked pea, common bean, chickpea and lentil legumes. Food Chem 2006;94:327-30.

Lee YP, Puddey IB, Hodgson JM. Protein, fibre and blood pressure: Potential benefit of legumes. Clin Exp Pharmacol Physiol 2008;35:473-6.

Darmadi-Blackberry I, Wahlqvist ML, Kouris-Blazos A, Steen B, Lukito W, Horie Y, Horie K. Legumes: The most important dietary predictor of survival in older people of different ethnicities. Asia Pac J Clin Nutr 2004;13:217-20.

Bazzano LA, Thompson AM, Tees MT, Nguyen CH, Winham DM. Non-soy legume consumption lowers cholesterol levels: A meta-analysis of randomized controlled trials. Nutr Metab Cardiovasc Dis 2011;21:94-103.

Ha V, Sievenpiper JL, de Souza RJ, Jayalath VH, Mirrahimi A, Agarwal A; et al. Effect of dietary pulse intake on established therapeutic lipid targets for cardiovascular risk reduction: A systematic review and meta-analysis of randomized controlled trials. CMAJ Canad Med Assoc J 2014;186:E252-E262.

Jayalath VH, de Souza RJ, Sievenpiper JL, Ha V, Chiavaroli L, Mirrahimi A; et al. Effect of dietary pulses on blood pressure: A systematic review and meta-analysis of controlled feeding trials. Am J Hypertens 2014;27:56-64.

Rizkalla SW, Bellisle F, Slama G. Health benefits of low glycaemic index foods, such as pulses, in diabetic patients and healthy individuals. Brit J Nutr 2002;88 (3 Suppl):S255-S262.

Hosseinpour-Niazi S, Mirmiran P, Hedayati M, Azizi F. Substitution of red meat with legumes in the therapeutic lifestyle change diet based on dietary advice improves cardiometabolic risk factors in overweight type 2 diabetes patients: A cross-over randomized clinical trial. Eur J Clin Nutr 2015;69: 592-7.

Abete I, Parra D, Martinez JA. Legume-, fish-, or high-protein-based hypocaloric diets: Effects on weight loss and mitochondrial oxidation in obese men. J Med Food 2009;12:100-8.

McCrory MA, Hamaker BR, Lovejoy JC, Eichelsdoerfer PE. Pulse consumption, satiety, and weight management. Adv Nutr 2010;1:17-30.

Venn BJ, Perry T, Green TJ, Skeaff CM, Aitken W, Moore NJ; et al. The effect of increasing consumption of pulses and wholegrains in obese people: A randomized controlled trial. J Am Coll Nutr 2010;29:365-72.

Mollard RC, Luhovyy BL, Panahi S, Nunez M, Hanley A, Anderson GH. Regular consumption of pulses for 8 weeks reduces metabolic syndrome risk factors in overweight and obese adults. Brit J Nutr 2012;108(1 Suppl):S111-S122.

Nouman W, Basra SMA, Siddiqui MT, Yasmeen A, Gull T, Alcayde MAC. Potential of Moringa oleifera L. as livestock fodder crop: A review. Turk J Agric Forest 2014;38:1-14.

Kiefer D. Another intriguing antioxidant tropical plant: Moringa. Integrat Med Alert 2013;16:43-5. Disponible en: https://insights.ovid.com/integrative-medicine-alert/intma/2013/04/000/intriguing-antioxidant-tropical-plant-moringa/3/01762427. Fecha de última visita: 16 de Diciembre del 2017.

Doménech Asensi G, Durango Villadiego AM, Ros Berruezo G. Moringa oleifera: Revisión sobre aplicaciones y usos en alimentos. ALAN Arch Latinoam Nutr 2017; 67(2): 0-0. Disponible en: http://www.scielo.org.ve/scielo.php?script=sci_arttext&pid=S0004-06222017000200003. Fecha de última visita: 27 de Noviembre del 2017.

Mbikay M. Therapeutic potential of Moringa oleifera leaves in chronic hyperglycemia and dyslipidemia: A review. Front Pharmacol 2012;3:24-24. Disponible en: https://www.frontiersin.org/articles/10.3389/fphar.2012.00024. Fecha de última visita: 18 de Diciembre del 2017.

Leone A, Spada A, Battezzati A, Schiraldi A, Aristil J, Bertoli S. Moringa oleifera seeds and oil: Characteristics and uses for human health. Int J Mol Sci 2016;17(12):2141-2141. Disponible en: https://www.mdpi.com/1422-0067/17/12/2141. Fecha de última visita: 19 de Diciembre del 2017.

Bonal Ruiz R, Rivera R, Bolívar Carrión E. Moringa oleifera: Una opción saludable para el bienestar. MEDISAN [Santiago de Cuba] 2012;16(10):0-0. Disponible en: http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S1029-30192012001000014. Fecha de última visita: 27 de Noviembre del 2017.

Mujica A, Jacobsen SE. La quinua (Chenopodium quinoa Willd.) y sus parientes silvestres. En: Botánica Económica de los Andes Centrales [Editores: Moraes M, Øllgaard B, Kvist LP, Borchsenius F, Balslev H]. Universidad Mayor de San Andrés. La Paz: 2006. Pp 449-453. Disponible en: https://www.researchgate.net/profile/Monica_Moraes_R/publication/312313242_Botanica_Economica_de_los_Andes_Centrales/links/587988a408ae9a860fe2f2ad/Botanica-Economica-de-los-Andes-Centrales.pdf#page=327. Fecha de última visita: 9 de Febrero del 2018.

Nowak V, Du J, Charrondière UR. Assessment of the nutritional composition of quinoa (Chenopodium quinoa Willd.). Food Chem 2016;193:47-54.

Abellán Ruiz MS, Barnuevo Espinosa MD, García Santamaría C, Contreras Fernández C, Aldeguer García M, Soto Méndez F; et al. Efecto del consumo de quinua (Chenopodium quinoa) como coadyuvante en la intervención nutricional en sujetos prediabéticos. Nutrición Hospitalaria [España] 2017;34:1163-9.

Gutiérrez Tolentino R, Ramírez Vega ML, Vega y León S, Fontecha J, Rodríguez ML, Escobar Medina A. Contenido de ácidos grasos en semillas de chía (Salvia hispanica L.) cultivadas en cuatro estados de México. Rev Cubana Plant Med 2014;19(3):199-207. Disponible en: http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S1028-47962014000300008&lng=es. Fecha de última visita: 5 de Julio del 2017.

Ferreira CS, Fomes LFS, Silva Gilze ES, Rosa G. Effect of chia seed (Salvia hispanica L.) consumption on cardiovascular risk factors in humans: A systematic review. Nutrición Hospitalaria [España] 2015;32:1909-18. Disponible en: http://scielo.isciii.es/scielo.php?script=sci_arttext&pid=S0212-16112015001100006&lng=es. Fecha de última visita: 5 de Julio del 2017.

Vuksan V, Whitman D, Sievenpiper JL, Jenkis AL, Rogovik AL, Bazinet RP, Vidgen E, Amir H. Supplementation of conventional therapy with the novel grain salba (Salvia hispanica L.) improves major and emerging cardiovascular risk factors in type 2 Diabetes. Diabetes Care 2007;302:804-9.

Vuksan V, Jenkins AL, Dias AG, Lee AS, Jovanovski E, Rogovik AL, Hanna A. Reduction in postprandial glucose excursion and prolongation of satiety: Possible explanation of the long-term effects of whole grain Salba (Salvia hispanica L.). Eur J Clin Nutr 2010;64:436-8.

Ho H, Lee AS, Jovanovski E, Jenkins AL, Desouza R, Vuksan V. Effect of whole and ground salba seeds (Salvia hispanica L.) on postprandial glycemia in healthy volunteers: A randomized controlled, dose-response trial. Eur J Clin Nutr 2013;67:786-8.

Nieman DC, Cayea EJ, Austin MD, Henson DA, McAnulty SR, Jin F. Chia seed does not promote weight loss or alter disease risk factors in overweight adults. Nutr Res 2009;29:414-8.

Ayerza R, Coates W. An ω-3 fatty acid enriched chia diet: influence on egg fatty acid composition, cholesterol and oil content. Canad J Anim Sci 1999;79:53-8.

Oh SY, Ryue J, Hsieh CH, Bell DE. Eggs enriched in ω-3 fatty acids and alterations in lipid concentrations in plasma and lipoproteins and in blood pressure. Am J Clin Nutr 1991;54:689-95.

González Maza M, Guerra Ibañez G, Maza Hernández JC, Cruz Dopico Al. Revisión bibliográfica sobre el uso terapéutico del ajo. Rev Cubana Med Fís Rehab 2014;6(1):0-0. Disponible en: http://bvs.sld.cu/revistas/mfr/v6n1_14/mfr06114.htm. Fecha de última visita: 28 de Noviembre del 2017.

García JL, Sánchez-Muniz FJ. Efectos cardiovasculares del ajo (Allium sativum). ALAN Arch Latinoam Nutr 2000;50:219-29.

Varshney R, Budoff MJ. Garlic and heart disease. J Nutr 2016;146(2 Suppl):S416-S421.

Schwingshackl L, Missbach B, Hoffmann G. An umbrella review of garlic intake and risk of cardiovascular disease. Phytomedicine 2016;23:1127-33.

Ried K, Toben C, Fakler P. Effect of garlic on serum lipids: An updated meta-analysis. Nutr Rev 2013;71:282-99.

Ried K, Travica N, Sali A. The effect of aged garlic extract on blood pressure and other cardiovascular risk factors in uncontrolled hypertensives: The AGE at Heart trial. Integrat Blood Press Control 2016;9:9-21.

Atkin M, Laight D, Cummings MH. The effects of garlic extract upon endothelial function, vascular inflammation, oxidative stress and insulin resistance in adults with type 2 diabetes at high cardiovascular risk. A pilot double blind randomized placebo controlled trial. J Diab Complic 2016;30: 723-7.

Ros E. Health benefits of nut consumption. Nutrients 2010;2:652-82.

Ros E. Nuts and novel biomarkers of cardiovascular disease. Am J Clin Nutr 2009;89(Suppl):S1649-S1656.

Coates AM, Howe PR. Edible nuts and metabolic health. Curr Opin Lipidol 2007;18:25-30.

Luo C, Zhang Y, Ding Y, Shan Z, Chen S, Yu M; et al. Nut consumption and risk of type 2 diabetes, cardiovascular disease, and all-cause mortality: A systematic review and meta-analysis. Am J Clin Nutr 2014;100:256-69.

Grosso G, Yang J, Marventano S, Micek A, Galvano F, Kales SN. Nut consumption on all-cause, cardiovascular, and cancer mortality risk: A systematic review and meta-analysis of epidemiologic studies. Am J Clin Nutr 2015;101:783-93.

Zhou D, Yu H, He F, Reilly KH, Zhang J, Li S; et al. Nut consumption in relation to cardiovascular disease risk and type 2 diabetes: A systematic review and meta-analysis of prospective studies. Am J Clin Nutr 2014;100:270-7.

Sabate J, Wien M. Nuts, blood lipids and cardiovascular disease. Asia Pac J Clin Nutr 2010;19:131-6.

Renaud SD, de Lorgeril M. Wine, alcohol, platelets, and the French paradox for coronary heart disease. The Lancet 1992;339(8808):1523-6.

Basu A, Rhone M, Lyons TJ. Berries: Emerging impact on cardiovascular health. Nutr Rev 2010;68:168-77.

Rissanen TH, Voutilainen S, Virtanen JK, Venho B, Vanharanta M, Mursu J, Salonen JT. Low intake of fruits, berries and vegetables is associated with excess mortality in men: The Kuopio Ischaemic Heart Disease Risk Factor (KIHD) Study. J Nutr 2003; 133:199-204.

Huang H, Chen G, Liao D, Zhu Y, Xue X. Effects of berries consumption on cardiovascular risk factors: A meta-analysis with trial sequential analysis of randomized controlled trials. Nature Scientific Reports 2016;6:23625. Disponible en: https://www.nature.com/articles/srep23625. Fecha de última visita: 13 de Diciembre del 2017.

Cano-Marquina A, Tarín JJ, Cano A. The impact of coffee on health. Maturitas 2013;75:7-21.

Katz DL, Doughty K, Ali A. Cocoa and chocolate in human health and disease. Antiox Redox Signal 2011;15: 2779-811.

McKay DL, Blumberg JB. The role of tea in human health: An update. J Am Coll Nutr 2002;21:1-13.

Heck CI, De Mejia EG. Yerba mate tea (Ilex paraguariensis): A comprehensive review on chemistry, health implications, and technological considerations. J Food Sci 2007;72: R138-R151. Disponible en: https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1750-3841.2007.00535.x. Fecha de última visita: 15 de Enero del 2018.

Bøhn SK, Ward NC, Hodgson JM, Croft KD. Effects of tea and coffee on cardiovascular disease risk. Food Function 2012;3:575-91.

Godos J, Pluchinotta FR, Marventano S, Buscemi S, Li Volti G, Galvano F, Grosso G. Coffee components and cardiovascular risk: Beneficial and detrimental effects. Int J Food Sci Nutr 2014;65:925-36.

Marventano S, Salomone F, Godos J, Pluchinotta F, Del Rio D, Mistretta A; et al. Coffee and tea consumption in relation with non-alcoholic fatty liver and metabolic syndrome: A systematic review and meta-analysis of observational studies. Clin Nutr 2016;35:1269-81.

Das L, Bhaumik E, Raychaudhuri U, Chakraborty R. Role of nutraceuticals in human health. J Food Sci Technol 2012; 49:173-83.

Srinivasan K. Role of spices beyond food flavoring: Nutraceuticals with multiple health effects. Food Rev Int 2005;21:167-88.

Srinivasan K. Traditional Indian functional foods. En: Functional foods of the East. Nutraceut Sci Technol Series 2010;10:51-76. Disponible en: https://www.researchgate.net/profile/Krishnapura_Srinivasan/publication/299630588_Traditional_Indian_Functional_Foods/links/5992ce5b0f7e9b9895357a74/Traditional-Indian-Functional-Foods.pdf. Fecha de última visita: 18 de Enero del 2018.

Srinivasan K. Spices for taste and flavour: Nutraceuticals for human health. En: Spices: The elixir of life. London: 2011. pp 43-62. Disponible en: https://www.researchgate.net/profile/Krishnapura_Srinivasan/publication/285719456_Spices_for_Taste_and_Flavour_Nutraceuticals_for_Human_Health/links/5992ce16aca272ec908263c1/Spices-for-Taste-and-Flavour-Nutraceuticals-for-Human-Health.pdf. Fecha de última visita: 18 de Enero del 2018.

Rastogi S, Mohan Pandey M, Kumar Singh Rawat A. Spices: Therapeutic potential in cardiovascular health. Curr Pharmaceut Design 2017;23:989-98.

Beecher GR. Nutrient content of tomatoes and tomato products. Proc Soc Exp Biol Med 1998;218:98-100.

Stewart A, Bozonnet S, Mullen W, Jenkins G, Lean M, Crozier A. Occurrence of flavonols in tomatoes and tomato-based products. J Agric Food Chem 2000;48:2663-9.

Canene-Adams K, Campbell JK, Zaripheh S, Jeffery EH, Erdman Jr JW. The tomato as a functional food. J Nutr 2005;135:1226-30.

Willcox JK, Catignani GL, Lazarus S. Tomatoes and cardiovascular health. Crit Rev Food Sci Nutr 2003;43:1-18.

Cheng HM, Koutsidis G, Lodge JK, Ashor A, Siervo M, Lara J. Tomato and lycopene supplementation and cardiovascular risk factors: A systematic review and meta-analysis. Atherosclerosis 2017;257:100-8.

Anderson JW, Akanji AO. Dietary fiber- An overview. Diabetes Care 1991; 14:1126-31.

Truswell AS. Dietary fibre and blood lipids. Curr Opin Lipidol 1995;6:14-9.

Fernández M. Consuelo. La fibra dietética en la prevención del riesgo cardiovascular. Nutr Clín Diet Hosp 2010;30(2):4-12. Disponible en: http://www.nutricion.org/publicaciones/revista_2010_02/Fibra-dietetica.pdf. Fecha de última visita: 8 de Marzo del 2017.

Sánchez-Muniz FJ. Dietary fibre and cardiovascular health. Nutrición Hospitalaria [España] 2012;27(1):31-45. Disponible en: http://www.nutricionhospitalaria.com/pdf/5560.pdf. Fecha de última visita: 7 de Marzo del 2017.

Thakur BR, Singh RK, Handa AK, Rao MA. Chemistry and uses of pectin- A review. Crit Rev Food Sci Nutr 1997; 37:47-73.

Saura-Calixto F. Dietary fiber as a carrier of dietary antioxidants: An essential physiological function. J Agric Food Chem 2010;59:43-9.

Delargy HJ, O’Sullivan KR, Fletcher RJ, Blundell JE. Effects of amount and type of dietary fiber (soluble and insoluble) on short term control of appetite. Int J Food Sci Nutr 1997;48: 67-77.

Marinangeli CP, Jones PJ. Pulse grain consumption and obesity: Effects on energy expenditure, substrate oxidation, body composition, fat deposition and satiety. Brit J Nutr 2012; 108(1 Suppl):S46-S51.

Saremi A, Arora R. Vitamin E and cardiovascular disease. Am J Therap 2010;17(3):e56-e65. Disponible en: https://journals.lww.com/americantherapeutics/Abstract/2010/05000/Vitamin_E_and_Cardiovascular_Disease.20.aspx. Fecha de última visita: 13 de Diciembre del 2017.

Gaziano JM, Hennekens CH. The role of beta‐carotene in the prevention of cardiovascular disease. Ann NY Acad Sci 1993;691:148-55.

Riccioni G, Speranza L, Pesce M, Cusenza S, D’Orazio N, Glade MJ. Novel phytonutrient contributors to antioxidant protection against cardiovascular disease. Nutrition 2012; 28:605-10.

Ciccone MM, Cortese F, GesualdoM, Carbonara S, Zito A, Ricci G; et al. Dietary intake of carotenoids and their antioxidant and anti-inflammatory effects in cardiovascular care. Mediators Inflamm 2013:78:21-37.

Clinton SK. Lycopene: Chemistry, biology, and implications for human health and disease. Nutr Rev 1998;56:35-51.

Arab L, Steck S. Lycopene and cardiovascular disease. Am J Clin Nutr 2000;71(6 Suppl):S1691-S1695.

Plaza I. Los fitosteroles, el colesterol y la prevención de las enfermedades cardiovasculares. Clin Invest Arterioescleros 2001;13(5):209-218. Disponible en: https://www.sciencedirect.com/science/article/pii/S021491680178802X. Fecha de última visita: 6 de Marzo del 2017.

Rietjens IM, Louisse J, Beekmann K. The potential health effects of dietary phytoestrogens. Brit J Pharmacol 2017; 174:1263-80.

Tabeshpour J, Razavi BM, Hosseinzadeh H. Effects of avocado (Persea americana) on Metabolic syndrome: A comprehensive systematic review. Phytother Res 2017;31:819-37.

Padmanabhan M, Arumugam G. Effect of Persea americana (avocado) fruit extract on the level of expression of adiponectin and PPAR-γ in rats subjected to experimental hyperlipidemia and obesity. J Complement Integrat Med 2014;11:107-19.

Al-Dosari MS. Hypolipidemic and antioxidant activities of avocado fruit pulp on high cholesterol fed diet in rats. African J Pharm Pharmacol 2011;5: 1475-83.

Elbadrawy E, Shelbaya L. Hypolipidemic activities of hydroalcoholic extract of avocado fruit on high cholesterol fed diet in rats and its antioxidant effect in vitro. J Am Sci 2013;9:337-43.

Pérez Méndez O, García Hernández L . High-density lipoproteins (HDL) size and composition are modified in the rat by a diet supplemented with "Hass" avocado (Persea americana Miller). Arch Cardiol Mex 2007;77:17-24.

San Mauro-Martín I, Collado-Yurrita L, Blumenfeld-Olivares JA, Cuadrado-Cenzual MA, Calle-Purón ME, Hernández-Cabria M; et al. Efecto de esteroles vegetales en la reducción del colesterol plasmático: Ensayo clínico, controlado, aleatorizado, cruzado y doble ciego. Nutrición Hospitalaria [España] 2016; 33(3):685-91. Disponible en: http://scielo.isciii.es/scielo.php?script=sci_arttext&pid=S0212-16112016000300027&lng=es. Fecha de última visita: 5 de Julio del 2017.

Berger A, Jones PJ, Abumweis SS. Plant sterols: factors affecting their efficacy and safety as functional food ingredients. Lipids Health Dis 2004;3: 5-5. Disponible en: https://lipidworld.biomedcentral.com/articles/10.1186/1476-511X-3-5. Fecha de última visita: 4 de Diciembre del 2017.

Lands WE. Biochemistry and physiology of n-3 fatty acids. FASEB J 1992;6:2530-6.

Meyer BJ, Mann NJ, Lewis JL, Milligan GC, Sinclair AJ, Howe PR. Dietary intakes and food sources of omega‐6 and omega‐3 polyunsaturated fatty acids. Lipids 2003;38:391-8.

Simopoulos AP. Human requirement for N-3 polyunsaturated fatty acids. Poultry Sci 2000;79:961-70.

Calder PC. Mechanisms of action of (n-3) fatty acids. J Nutr 2012;142(3 Suppl):S592-S599.

Connor WE. Effects of omega-3 fatty acids in hypertriglyceridemic states. Sem Thromb Hemost 1988;14:271-84.

Poudyal H, Panchal SK, Diwan V, Brown L. Omega-3 fatty acids and metabolic syndrome: Effects and emerging mechanisms of action. Prog Lip Res 2011;50:372-87.

Shapiro H, Tehilla M, Attal-Singer J, Bruck R, Luzzatti R, Singer P. The therapeutic potential of long-chain omega-3 fatty acids in nonalcoholic fatty liver disease. Clin Nutr 2011;30:6-19.

Simopoulos AP. Omega-3 fatty acids and antioxidants in edible wild plants. Biol Res 2004;37:263-77.

Calder PC, Yaqoob P. Omega‐3 polyunsaturated fatty acids and human health outcomes. Biofactors 2009;35: 266-72.

Harper CR, Jacobson TA. The fats of life: The role of omega-3 fatty acids in the prevention of coronary heart disease. Arch Int Med 2001;161:2185-92.

Harris WS, Bulchandani D. Why do omega-3 fatty acids lower serum triglycerides? Curr Op Lipidol 2006;17:387-93.

Wojcicki J, Pawlik A, Samochowiec L, Kaldoǹska M, Myśliwiec Z. Clinical evaluation of lecithin as a lipid‐lowering agent. Phytother Res 1995;9:597-9.

Bradley JM, Organ CL, Lefer DJ. Garlic-derived organic polysulfides and myocardial protection. J Nutr 2016;146 (2 Suppl):S403-S409.

Vincken JP, Heng L, de Groot A, Gruppen H. Saponins, classification and occurrence in the plant kingdom. Phytochem 2007;68:275-97.

Sparg S, Light ME, Van Staden J. Biological activities and distribution of plant saponins. J Ethnopharmacol 2004; 94:219-43.

Marrelli M, Conforti F, Araniti F, Statti G. Effects of saponins on lipid metabolism: A review of potential health benefits in the treatment of obesity. Molecules 2016;21(10):1404-1404. Disponible en: https://www.mdpi.com/1420-3049/21/10/1404. Fecha de última visita: 14 de Diciembre del 2017.

Dewick PM, Haslam E. Phenol biosynthesis in higher plants. Gallic acid. Biochem J 1969;113:537-42.

Clifford MN. Chlorogenic acids and other cinnamates- Nature, occurrence and dietary burden. J Sci Food Agric 1999;79:362-72.

Vattem DA, Shetty K. Biological functionality of ellagic acid: A review. J Food Bioch 2005;29:234-66.

Meng S, Cao J, Feng Q, Peng J, Hu Y. Roles of chlorogenic acid on regulating glucose and lipids metabolism: A review. Evidence-Based Complement Alternat Med 2013;2013. Disponible en: http://dx.doi.org/10.1155/2013/801457. Fecha de última visita: 15 de Enero del 2018.

Tajik N, Tajik M, Mack I, Enck P. The potential effects of chlorogenic acid, the main phenolic components in coffee, on health: A comprehensive review of the literature. Eur J Nutr 2017;56:2215-2215. https://doi.org/10.1007/s00394-017-1379-1. Fecha de última visita: 16 de Enero del 2018.

Quideau SP, Deffieux D, Douat-Casassus CL, Pouységu L. Plant polyphenols: Chemical properties, biological activities, and synthesis. Angewandte Chem 2011;50:586-621.

Gambini J, Inglés M, Olaso G, López-Grueso R, Bonet-Costa V, Gimeno-Mallench L; et al. Properties of resveratrol: In vitro and in vivo studies about metabolism, bioavailability, and biological effects in animal models and humans. Oxidat Med Cell Longevit 2015:837042-837042. Disponible en: https://www.hindawi.com/journals/omcl/2015/837042/. Fecha de última visita: 16 de Diciembre del 2017.

Gambini J, López-Grueso R, Olaso-González G, Inglés M, Abdelazid K, El Alami M; et al. Resveratrol: Distribución, propiedades y perspectivas. Rev Esp Geriat Gerontol 2013;48:79-88. Disponible en: https://www.sciencedirect.com/science/article/pii/S0211139X12001023. Fecha de última visita: 16 de Diciembre del 2017.

Gülçin İ. Antioxidant properties of resveratrol: A structure-activity insight. Innovat Food Sci Emerg Technol 2010; 11:210-8.

Petrovski G, Gurusamy N, Das DK. Resveratrol in cardiovascular health and disease. Ann NY Acad Sci 2011; 1215:22-33.

Bertelli AA, Das DK. Grapes, wines, resveratrol, and heart health. J Cardiovasc Pharmacol 2009;54:468-76.

Séfora-Sousa M, De Angelis-Pereira MC. Mecanismos moleculares de ação anti-inflamatória e antioxidante de polifenóis de uvas e vinho tinto na aterosclerose. Rev Bras Plantas Med 2013;15(4):617-26. Disponible en: http://dx.doi.org/10.1590/S1516-05722013000400020. Fecha de última visita: 29 de Octubre del 2017.

Corradini E, Foglia P, Giansanti P, Gubbiotti R, Samperi R, Lagana A. Flavonoids: Chemical properties and analytical methodologies of identification and quantitation in foods and plants. Natural Product Res 2011;25:469-95.

Alrawaiq NS, Abdullah A. A review of flavonoid quercetin: Metabolism, bioactivity and antioxidant properties. Int J Pharm Tech Research 2014;6:933-41.

Gormaz JG, Quintremil S, Rodrigo R. Cardiovascular disease: A target for the pharmacological effects of quercetin. Curr Topics Med Chem 2015;15:1735-42.

Kleemann R, Verschuren L, Morrison M, Zadelaar S, van Erk MJ, Wielinga PY, Kooistra T. Anti-inflammatory, anti-proliferative and anti-atherosclerotic effects of quercetin in human in vitro and in vivo models. Atherosclerosis 2011;218:44-52.

Mladenka P, Zatloukalová L, Filipský T, Hrdina R. Cardiovascular effects of flavonoids are not caused only by direct antioxidant activity. Free Radical Biol Med 2010;49:963-75.

Benavente-García O, Castillo J, Marin FR, Ortuño A, Del Río JA. Uses and properties of citrus flavonoids. J Agric Food Chem 1997;45:4505-15.

Benavente-García O, Castillo J. Update on uses and properties of citrus flavonoids: New findings in anticancer, cardiovascular, and anti-inflammatory activity. J Agric Food Chem 2008; 56:6185-205.

Assini JM, Mulvihill EE, Huff MW. Citrus flavonoids and lipid metabolism. Curr Opin Lipidol 2013;24:34-40.

Yilmaz Y, Toledo RT. Major flavonoids in grape seeds and skins: Antioxidant capacity of catechin, epicatechin, and gallic acid. J Agric Food Chem 2004;52:255-60.

Singh BN, Shankar S, Srivastava RK. Green tea catechin, epigallocatechin-3-gallate (EGCG): Mechanisms, perspectives and clinical applications. Biochem Pharmacol 2011;82:1807-21.

Hodgson JM, Croft KD. Tea flavonoids and cardiovascular health. Mol Aspects Med 2010;31:495-502.

Johnson R, Bryant S, Huntley AL. Green tea and green tea catechin extracts: An overview of the clinical evidence. Maturitas 2012;73:280-7.

Deka A, Vita JA. Tea and cardiovascular disease. Pharmacol Res 2011;64:136-45.

Ramdath DD, Padhi EMT, Sarfaraz S, Renwick S, Duncan AM. Beyond the cholesterol-lowering effect of soy protein: A review of the effects of dietary soy and its constituents on risk factors for cardiovascular disease. Nutrients 2017;9:324-324. Disponible en: http://doi:10.3390/nu9040324. Fecha de última visita:

González Cañete N, Durán Agüero S. Isoflavonas de soya y evidencias sobre la protección cardiovascular. Nutrición Hospitalaria [España] 2014;29(6):0-0. Disponible en: http://scielo.isciii.es/scielo.php?script=sci_arttext&pid=S0212-16112014000600007. Fecha de última visita: 28 de Noviembre del 2017.

Nestel P. Isoflavones: Their effects on cardiovascular risk and functions. Curr Op Lipidol 2003;141:3-8.

Anthony MS, Clarkson TB, Williams JK. Effects of soy isoflavones on atherosclerosis: Potential mechanisms. Am J Clin Nutr 1998;68(6 Suppl):S1390-S1393.

Rasmussen SE, Frederiksen H, Struntze Krogholm K, Poulsen L. Dietary proanthocyanidins: Occurrence, dietary intake, bioavailability, and protection against cardiovascular disease. Mol Nutr Food Res 2005;49:159-74.

Millar CL, Duclos Q, Blesso CN. Effects of dietary flavonoids on reverse cholesterol transport, HDL metabolism, and HDL function. Adv Nutr 2017;8: 226-39.

Zeka K, Ruparelia K, Arroo R, Budriesi R, Micucci M. Flavonoids and their metabolites: Prevention in cardiovascular diseases and diabetes. Diseases 2017;5:19-19. Disponibe en: https://www.mdpi.com/2079-9721/5/3/19. Fecha de última visita: 16 de Diciembre del 2017.

Mueller M, Jungbauer A. Culinary plants, herbs and spices- A rich source of PPARγ ligands. Food Chem 2009; 117:660-7.

Mueller M, Beck V, Jungbauer A. PPARα activation by culinary herbs and spices. Planta Medica 2011;77:497-504.

Penumetcha M, Santanam N. Nutraceuticals as ligands of PPAR. PPAR Research 2012:2012. Disponible en: https://www.hindawi.com/journals/ppar/2012/858352/. Fecha de última visita: 20 de Diciembre del 2017.

Willett WC, Sacks F, Trichopoulou A, Drescher G, Ferro-Luzzi A, Helsing E, Trichopoulos D. Mediterranean diet pyramid: A cultural model for healthy eating. Am J Clin Nutr 1995;61(6 Suppl):S1402-S1406.

Widmer RJ, Flammer AJ, Lerman LO, Lerman A. The Mediterranean diet, its components, and cardiovascular disease. Am J Med 2015;128:229-38.

Sofi F, Cesari F, Abbate R, Gensini GF, Casini A. Adherence to Mediterranean diet and health status: Meta-analysis. BMJ 2008;337:a1344-a1344. Disponible en: https://www.bmj.com/content/337/bmj.a1344.long. Fecha de última visita: 15 de Diciembre del 217.

Willcox DC, Willcox BJ, Todoriki H, Suzuki M. The Okinawan diet: Health implications of a low-calorie, nutrient-dense, antioxidant-rich dietary pattern low in glycemic load. J Am Coll Nutr 2009;28(4 Suppl):S500-S516.

Appel LJ, Moore TJ, Obarzanek E, Vollmer WM, Svetkey LP, Sacks FM; et al; for the DASH Collaborative Research Group. A clinical trial of the effects of dietary patterns on blood pressure. N Engl J Med 1997;336:1117-24.

Sacks FM, Svetkey LP, Vollmer WM, Appel LJ, Bray GA, Harsha D; et al; for the DASH-Sodium Collaborative Research Group. Effects on blood pressure of reduced dietary sodium and the Dietary Approaches to Stop Hypertension (DASH) diet. N Engl J Med 2001;344(1):3-10.

Obarzanek E, Sacks FM, Vollmer WM, Bray GA, Miller 3rd ER, Lin PH; et al; for the DASH Research Group. Effects on blood lipids of a blood pressure-lowering diet: The Dietary Approaches to Stop Hypertension (DASH) Trial. Am J Clin Nutr 2001;74: 80-9.

Enlaces refback

  • No hay ningún enlace refback.