La ecografía del cuadriceps como indicador de la depleción energético-nutrimental en los pacientes pediátricos críticamente enfermos

Alfredo Carlos Rodríguez Portelles, Taymí Castro Morales, Alberto Rubén Piriz Assa, Arianna Maité Céspedes Rómulo

Texto completo:

PDF

Resumen

Introducción: Los niños y adolescentes críticamente enfermos son particularmente vulnerables a la depleción energético-nutrimental (DEN) y la muerte debido a la intensidad de la agresión y la injuria, la extensión y el impacto de la respuesta a la agresión, y también a las fallas en la prestación del apoyo nutricional. La DEN impacta especialmente a la masa magra corporal: sustrato anatomomorfológico del metabolismo. La ecografía del cuadriceps femoral podría indicar la gravedad de la DEN ocurrida en el paciente. No se tienen estudios previos en Cuba sobre el uso de la ecografía del cuadriceps como indicador imagenológico de la DEN. Objetivo: Estimar el comportamiento de la ecografía del cuadriceps como indicador imagenológico de la DEN en los pacientes pediátricos críticamente enfermos. Locación del estudio: Unidad de Cuidados Críticos (UCI) del Hospital “Octavio de la Concepción de la Pedraja” (ciudad de Holguín, Provincia de Holguín, Cuba). Diseño del estudio: Serie de casos. Serie de estudio: Setenta pacientes (Varones: 65.7 %; Edad promedio: 7.4 ± 5.0 años) atendidos en la UCI (Estadía hospitalaria: 16.1 ± 2.4 días; Tasa de ventilación mecánica: 28.6 %; Tasa de supervivencia: 90.0 %) entre Marzo del 2018 y Marzo del 2019 (ambos inclusive). Métodos: El estado nutricional del paciente, el balance energético, el balance proteico, y el grosor del cuadriceps (medido por ecografía del tercio medio del muslo no dominante) se obtuvieron transcurridos 5 y 10 días de estancia en la UCI. El grosor del cuadriceps se correlacionó con los cambios ocurridos en los balances energético y proteico.Resultados: El grosor en el cuadriceps femoral se comportó como sigue: Al ingreso: 1.60 ± 0.20 cm; A los 5 días: 1.58 ± 0.20 cm (D = -1.7 %); A los 10 días: 1.49 ± 0.21 cm (D = -7.2 %; p < 0.05); respectivamente. Una reducción acumulada del 12.4 % del grosor del cuadriceps se trasladó a un déficit energético ≥ 25 % (AUROC: 0.82; Sensibilidad: 0.92; Especificidad: 0.77).  Mientras, una reducción acumulada del 11.7 % del grosor del cuadriceps se asoció con un déficit proteico ≥ 1 g.kg-1.día-1 (AUROC: 0.80; Sensibilidad: 0.91; Especificidad: 0.81). Conclusiones: El grosor del cuadriceps (medido mediante ecografía) se asocia fuertemente con la DEN en los pacientes pediátricos críticamente enfermos. Recomendaciones: La ecografía del cuadriceps puede tener valor predictivo en la identificación y el seguimiento no invasivo y confiable de los pacientes con una importante deuda nutricional.

Palabras clave

Cuadriceps; Ultrasonido; Ecografía; Pediatría; Desnutrición; Músculo esquelético; Proteínas

Referencias

Hulst J, Joosten K, Zimmermann L, Hop W, van Buuren S, Büller H; et al. Malnutrition in critically ill children: From admission to 6 months after discharge. Clin Nutr 2004;23:223-32.

Lekmanov AU, Erpuleva I. Hypermetabolism syndrome in critically ill children. Anesteziol Reanimatol 2006;1:74-7. Disponible en: https://www.ncbi.nlm.nih.gov/pubmed/16613052. Fecha de última visita: 7 de Marzo del 2019.

Delgado AF, Okay TS, Leone C, Nichols B, Del Negro GM, Vaz FAC. Hospital malnutrition and inflammatory response in critically ill children and adolescents admitted to a tertiary intensive care unit. Clinics 2008;63:357-62.

Niederwanger C, Bachler M, Hell T, Linhart C, Entenmann A, Balog A; et al. Inflammatory and coagulatory parameters linked to survival in critically ill children with sepsis. Ann Intens Care 2018;8:111-9.

Faustino EVS, Bogue CW. Relationship between hypoglycemia and mortality in critically ill children. Pediatr Crit Care Med 2010;11:690-8.

Zimmerman JJ, Akhtar SR, Caldwell E, Rubenfeld GD. Incidence and outcomes of pediatric acute lung injury. Pediatrics 2009;124:87-95.

Hayes LW, Oster RA, Tofil NM, Tolwani AJ. Outcomes of critically ill children requiring continuous renal replacement therapy. J Crit Care 2009; 24:394-400.

Larsen GY, Donaldson AE, Parker HB, Grant MJC. Preventable harm occurring to critically ill children. Pediatr Crit Care Med 2007;8:331-6.

Rogers EJ, Gilbertson HR, Heine RG, Henning R. Barriers to adequate nutrition in critically ill children. Nutrition 2003;19:865-8.

Coss-Bu JA, Klish WJ, Walding D, Stein F, Smith EOB, Jefferson LS. Energy metabolism, nitrogen balance, and substrate utilization in critically ill children. Am J Clin Nutr 2001;74:664-9.

Briassoulis G, Briassouli E, Tavladaki T, Ilia S, Fitrolaki DM, Spanaki AM. Unpredictable combination of metabolic and feeding patterns in malnourished critically ill children: The malnutrition-energy assessment question. Intens Care Med 2014;40:120-2.

Mehta NM, Bechard LJ, Dolan M, Ariagno K, Jiang H, Duggan C. Energy imbalance and the risk of overfeeding in critically ill children. Pediatr Crit Care Med 2011;12:398-405.

Kyle UG, Jaimon N, Coss-Bu JA. Nutrition support in critically ill children: Underdelivery of energy and protein compared with current recommendations. J Acad Nutr Diet 2012;112(12):1987-92. Disponible en: https://www.ncbi.nlm.nih.gov/pubmed/23063414. Fecha de última visita: 8 de Marzo del 2019.

de Souza Menezes F, Leite HP, Nogueira PCK. Malnutrition as an independent predictor of clinical outcome in critically ill children. Nutrition 2012;28:267-70.

Costelli P, Baccino FM. Mechanisms of skeletal muscle depletion in wasting syndromes: role of ATP-ubiquitin-dependent proteolysis. Curr Op Clin Nutr Metab Care 2003;6(4):407-12. Disponible en: https://www.ncbi.nlm.nih.gov/pubmed/12806214. Fecha de última visita: 9 de Marzo del 2019.

Banwell BL, Mildner RJ, Hassall AC, Becker LE, Vajsar J, Shemie SD. Muscle weakness in critically ill children. Neurology 2003;61:1779-82.

Field-Ridley A, Dharmar M, Steinhorn D, McDonald C, Marcin JP. Intensive Care Unit-acquired weakness (ICU-AW) is associated with differences in clinical outcomes in critically ill children. Pediatr Crit Care Med 2016;17:53-7.

Weijs PJM, Looijaard WGPM, Dekker IM, Stapel SN, Girbes AR, Oudemans-van Straaten HM; et al. Low skeletal muscle area is a risk factor for mortality in mechanically ventilated critically ill patients. Crit Care 2014;18(2):R12-R12. Disponible en: https://www.ncbi.nlm.nih.gov/pubmed/24410863. Fecha de última visita: 15 de Marzo del 2019.

Preiser J-C, van Zanten ARH, Berger MM, Biolo G, Casaer MP, Doig GS; et al. Metabolic and nutritional support of critically ill patients: Consensus and controversies. Crit Care 2015;19(1): 35-35. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4310041/. Fecha de última visita: 9 de Marzo del 2019.

Verger J. Nutrition in the pediatric population in the intensive care unit. Crit Care Nurs Clin North Am 2014;26(2): 199-215.Disponible en: https://www.ncbi.nlm.nih.gov/pubmed/24878206. Fecha de última visita: 9 de Marzo del 2019.

Chapela S, Martinuzzi A. Pérdida de masa muscular en el paciente críticamente enfermo: ¿Caquexia, sarcopenia y/o atrofia? Impacto en la respuesta terapéutica y la supervivencia. RCAN Rev Cubana Aliment Nutr 2018; 28:393-416.

Vivier E, Roussey A, Doroszewski F, Rosselli S, Pommier C, Carteaux G, Mekontso Dessap A. Atrophy of diaphragm and pectoral muscles in critically ill patients. Anesthesiol 2019;131(3):569-79. Disponible en: http://doi:10.1097/ALN.0000000000002737. Fecha de última visita: 10 de Marzo del 2019.

Handsfield GG, Meyer CH, Hart JM, Abel MF, Blemker SS. Relationships of 35 lower limb muscles to height and body mass quantified using MRI. J Biomech 2014;47:631-8.

Vondracek P, Bednarik J. Clinical and electrophysiological findings and long-term outcomes in paediatric patients with critical illness polyneuromyopathy. Eur J Paediatr Neurol 2006;10:176-81.

Ng KW, Dietz AR, Johnson R, Shoykhet M, Zaidman CM. Reliability of bedside ultrasound of limb and diaphragm muscle thickness in critically ill children. Muscle Nerve 2019;59:88-94.

Matamis D, Soilemezi E, Tsagourias M, Akoumianaki E, Dimassi S, Boroli F; et al. Sonographic evaluation of the diaphragm in critically ill patients. Technique and clinical applications. Intens Care Med 2013;39:801-10.

Waligora AC, Johanson NA, Hirsch BE. Clinical anatomy of the quadriceps femoris and extensor apparatus of the knee. Clin Orth Relat Res 2009;467:3297-306.

Bartels EM, Sørensen ER, Harrison AP. Multi‐frequency bioimpedance in human muscle assessment. Physiol Rep 2015; 3(4):e12354. Disponible en: http://doi:10.14814/phy2.12354. Fecha de última visita: 11 de Marzo del 2019.

Pietrobelli A, Morini P, Battistini N, Chiumello G, Nunez C, Heymsfield SB. Appendicular skeletal muscle mass: Prediction from multiple frequency segmental bioimpedance analysis. Eur J Clin Nutr 1998;52:507-11.

Hall Smith C. Evaluación del estado nutricional del nefrópata en diálisis iterada mediante bioimpedancia eléctrica. RCAN Rev Cubana Aliment Nutr 2019;29(1 Supl 2):S1-S69.

Paris M, Mourtzakis M. Assessment of skeletal muscle mass in critically ill patients: Considerations for the utility of computed tomography imaging and ultrasonography. Curr Op Clin Nutr Metab Care 2016;19:125-30.

Lukaski HC. Soft tissue composition and bone mineral status: Evaluation by dual energy X-ray absorptiometry. J Nutr 1993;123:438-43.

Rothwell DT, Williams DJ, Furlong LM. Measuring muscle size and symmetry in healthy adult males using a time-efficient analysis of magnetic resonance images. Physiol Meas 2019;40(6):064005. Disponible en: http://doi:10.1088/1361-6579/ab2323. Fecha de última visita: 10 de Marzo del 2019.

Beneke R, Neuerburg J, Bohndorf K. Muscle cross-section measurement by magnetic resonance imaging. Eur J Appl Physiol Occupat Physiol 1991;63:424-9.

Mourtzakis M, Wischmeyer P. Bedside ultrasound measurement of skeletal muscle. Curr Opin Clin Nutr Metab Care 2014;17(5):389-95. Disponible en: https://www.ncbi.nlm.nih.gov/pubmed/25023190. Fecha de última visita: 11 de Marzo del 2019.

Tillquist M, Kutsogiannis DJ, Wischmeyer PE, Kummerlen C, Leung R, Stollery D; et al. Bedside ultrasound is a practical and reliable measurement tool for assessing quadriceps muscle layer thickness. JPEN J Parenter Enteral Nutr 2014;38(7):886-90. Disponible en: https://www.ncbi.nlm.nih.gov/pubmed/23980134. Fecha de última visita: 11 de Marzo del 2019.

English C, Fisher L, Thoirs K. Reliability of real-time ultrasound for measuring skeletal muscle size in human limbs in vivo: A systematic review. Clin Rehabil 2012;26:934-44.

Ong C, Lee JH, Leow MK, Puthucheary ZA. Skeletal muscle ultrasonography in nutrition and functional outcome assessment of critically ill children: Experience and insights from pediatric disease and adult critical care studies. JPEN J Parenter Enteral Nutr 2017;41:1091-9.

Galindo Martínez CA, Monares Zepeda E, Lescas Méndez OA. Bedside ultrasound measurement of rectus femoris: A tutorial for the nutrition support clinician. J Nutr Metab 2017;2017:5. Disponible en: https://doi.org/10.1155/2017/2767232. Fecha de última visita: 11 de Marzo del 2019.

de Lima KM, da Matta TT, de Oliveira LF. Reliability of the rectus femoris muscle cross‐sectional area measurements by ultrasonography. Clin Physiol Funct Imag 2012;32:221-6.

Mosteller RD. Simplified calculation of body-surface area. N Engl J Med 1987; 317:1098.

World Health Organization. Physical status: The use and interpretation of anthropometry. Report of a WHO expert committee. World Health Organization. Technical Reports Series 1995;854:1-452. Geneva: 1995.

Schofield WN. Predicting basal metabolic rate, new standards and review of previous work. Hum Nutr Clin Nutr 1985;39:5-41.

Jotterand Chaparro C, Moullet C, Taffe P, Laure Depeyre J, Perez M-H, Longchamp D; et al. Estimation of resting energy expenditure using predictive equations in critically ill children: Results of a systematic review. JPEN J Parenter Enteral Nutr 2018;42(6):976-86. Disponible en: https://www.ncbi.nlm.nih.gov/pubmed/29603276. Fecha de última visita: 12 de Marzo del 2019.

Barreto Penié J, González Pérez TL, Santana Porbén S. Programa de intervención alimentaria, nutrimental y metabólica para hospitales pediátricos. Ediciones PalcoGraf. Ciudad Habana: 2000.

Santana Porbén S, Martínez Canalejo H. Manual de Procedimientos Bioestadísticos. Segunda Edición. EAE Editorial Académica Española. ISBN-13: 9783659059629. ISBN-10: 3659059625. Madrid: 2012.

Kumar R, Indrayan A. Receiver operating characteristic (ROC) curve for medical researchers. Indian Pediatric 2011;48:277-87.

Declaración de Helsinki de la Asociación Médica Mundial. Principios éticos para las investigaciones médicas en seres humanos. 41a Asamblea Médica Mundial Hong Kong, en septiembre de 1989. An Sist Sanit Navarra 2008;24:209-12.

Medina Rosas S, Alfonso Novo L, Santana Porbén S, Sosa Palacios O. Variación del peso corporal del niño enfermo durante la hospitalización. RCAN Rev Cubana Aliment Nutr 2015;25:11-27.

Peters AM, Snelling HLR, Glass DM, Bird NJ. Estimation of lean body mass in children. Brit J Anaesth 2011;106:719-23.

Pencharz PB, Vaisman N, Azcue M, Stallings VA. Body compartment changes in sick children. En: In vivo body composition studies. Springer. Boston [MA]: 1990. pp. 31-38.

Zamberlan P, de Carvalho WB, Delgado AF. Nutritional assessment and body composition in critically ill children as prognostic indicators. Curr Treat Opt Pediatr 2019;5:301-13.

Mickell JJ. Urea nitrogen excretion in critically ill children. Pediatr 1982;70:949-55.

Patterson BW, Nguyen T, Pierre E, Herndon DN, Wolfe RR. Urea and protein metabolism in burned children: Effect of dietary protein intake. Metabolism 1997;46:573-8.

Coss-Bu JA, Klish WJ, Walding D, Stein F, Smith EOB, Jefferson LS. Energy metabolism, nitrogen balance, and substrate utilization in critically ill children. Am J Clin Nutr 2001;74:664-9.

Chaparro CJ, Depeyre JL, Longchamp D, Perez MH, Taffé P, Cotting J. How much protein and energy are needed to equilibrate nitrogen and energy balances in ventilated critically ill children? Clin Nutr 2016;35:460-7.

Valla FV, Young DK, Rabilloud M, Periasami U, John M, Baudin F; et al. Thigh ultrasound monitoring identifies decreases in quadriceps femoris thickness as a frequent observation in critically ill children. Pediatr Crit Care Med 2017;18(8):e339-47. Disponible en: https://www.ncbi.nlm.nih.gov/pubmed/28650903. Fecha de última visita: 12 de Marzo del 2019.

Pardo E, El Behi H, Boizeau P, Verdonk F, Alberti C, Lescot T. Reliability of ultrasound measurements of quadriceps muscle thickness in critically ill patients. BMC Anesthesiol 2018;18(1):205-205. Disponible en: https://doi.org/10.1186/s12871-018-0647-9. Fecha de última visita: 12 de Marzo del 2019.

Puthucheary ZA, Rawal J, McPhail M, Connolly B, Ratnayake G, Chan P; et al. Acute skeletal muscle wasting in critical illness. JAMA 2013;310(15):1591-600. Disponible en: https://www.ncbi.nlm.nih.gov/pubmed/24108501. Fecha de última visita: 12 de Marzo del 2019.

Fivez T, Hendrickx A, van Herpe T, Vlasselaers D, Desmet L, van den Berghe G; et al. An analysis of reliability and accuracy of muscle thickness ultrasonography in critically ill children and adults. JPEN J Parenter Enteral Nutr 2016;40(7):944-9. Disponible en: https://www.ncbi.nlm.nih.gov/pubmed/25754437. Fecha de última visita: 12 de Marzo del 2019.

Carlotti APCP, Bohn D, Matsuno AK, Pasti DM, Gowrishankar M, Halperin ML. Indicators of lean body mass catabolism: Emphasis on the creatinine excretion rate. QJM 2008;101:197-205.

Tompuri TT, Lakka TA, Hakulinen M, Lindi V, Laaksonen DE, Kilpeläinen TO; et al. Assessment of body composition by dual‐energy X‐ray absorptiometry, bioimpedance analysis and anthropometrics in children: The Physical Activity and Nutrition in Children Study. Clin Physiol Funct Imag 2015;35:21-33.

Bechard LJ, Parrott JS, Mehta NM. Systematic review of the influence of energy and protein intake on protein balance in critically ill children. J Pediatr 2012;161:333-9.

Enlaces refback

  • No hay ningún enlace refback.




Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial 4.0 Internacional.