Sobre las interrelaciones entre la sarcopenia, envejecimiento y nutrición

Emilio Manuel Zayas Somoza, Vilma Fundora Alvarez, Sergio Santana Porbén

Texto completo:

PDF

Resumen

La sarcopenia denota los cambios que el envejecimiento causa en la estructura y la función del músculo esquelético. El músculo sarcopénico puede exhibir tamaños y volúmenes reducidos, una mayor infiltración grasa, y una menor fuerza de contracción, lo que puede conducir a la pérdida del validismo y la autonomía del sujeto. Dadas la participación del músculo esquelético en la estación bípeda y la locomoción, y la respuesta periférica a la acción de la insulina, la sarcopenia podría agravar la fragilidad del adulto mayor. La sarcopenia puede reconocerse mediante distintas técnicas de reconstrucción de la composición corporal. La dinamometría y la capacidad del sujeto de sostener esfuerzos musculares repetidos durante intervalos predefinidos de tiempo sirven también para examinar la fuerza de la contracción muscular. La sarcopenia es causada, en parte, por la deprivación de los esteroides sexuales que sigue al cese de la esteroidogénesis gonadal. Otras influencias como el sedentarismo y la alimentación no saludable también pueden contribuir al daño sarcopénico. Luego, una alimentación sana, la actividad física y la práctica regular de ejercicio físico son intervenciones primordiales en la prevención de la sarcopenia, primero; y el tratamiento y la paliación de esta condición, después. El uso de ayudas ergogénicas (entre ellas la creatina) puede ser considerado como una terapia adyuvante. El empleo de esteroides anabólicos podría considerarse en aquellos pacientes en los que se ha agotado la efectividad terapéutica de las intervenciones anteriores, o cuando se desea una reducción a corto plazo del riesgo de caída, discapacidad y/o postración

Palabras clave

Sarcopenia; Músculo esquelético; Miopenias; Atrofia; Fragilidad; Insulina; Hormona del crecimiento; Esteroides sexuales; Alimentación; Nutrición; Ejercicio físico

Referencias

Shlisky J, Bloom DE, Beaudreault AR, Tucker KL, Keller HH, Freund-Levi Y; et al. Nutritional considerations for healthy aging and reduction in age-related chronic disease. Adv Nutr 2017;8:17-26.

Zayas Somoza E, Fundora Álvarez V. Sobre las interrelaciones entre la nutrición y el envejecimiento. RCAN Rev Cubana Aliment Nutr 2017;27:394-429.

Cruz-Jentoft AJ, Kiesswetter E, Drey M, Sieber CC. Nutrition, frailty, and sarcopenia. Aging Clin Exp Res 2017;29:43-8.

Marzetti E, Calvani R, Tosato M, Cesari M, Di Bari M, Cherubini A; et al. Sarcopenia: An overview. Aging Clin Exp Res 2017;29:11-7.

Doherty TJ. Aging and sarcopenia. J Appl Physiol 2003;95:1717-27.

Muscaritoli M, Anker SD, Argiles J, Aversa Z, Bauer JM, Biolo G; et al. Consensus definition of sarcopenia, cachexia and pre-cachexia: Joint document elaborated by Special Interest Groups (SIG) “cachexia-anorexia in chronic wasting diseases” and “nutrition in geriatrics”. Clin Nutr 2010;29:154-9.

Fielding RA, Vellas B, Evans WE, Bhasin S, Morley JE, Newman AB, van Kan GA, Andrieu S, Bauer J, Breuille D; for the International Working Group on Sarcopenia. Sarcopenia: An undiagnosed condition in older adults. Current consensus definition: Prevalence, etiology, and consequences. J Am Med Dir Assoc 2011;12:249-56.

Cederholm T, Morley JE. Sarcopenia: The new definitions. Cur Op Clin Nutr Metab Care 2015;18:1-4.

Visser M. Towards a definition of sarcopenia- Results from epidemiologic studies. J Nutr Health Aging 2009;13:713-6.

Wang ZM, Visser M, Ma R, Baumgartner RN, Kotler D, Gallagher D, Heymsfield SB. Skeletal muscle mass: Evaluation of neutron activation and dual-energy X-ray absorptiometry methods. J Appl Physiol 1996;80:824-31.

Gallagher D, Visser M, De Meersman RE, Sepúlveda D, Baumgartner RN, Pierson RN, Harris T, Heymsfield SB. Appendicular skeletal muscle mass: effects of age, gender, and ethnicity. J Appl Physiol 1997;83:229-39.

Heymsfield SB, Smith R, Aulet M, Bensen B, Lichtman S, Wang J, Pierson Jr RN. Appendicular skeletal muscle mass: Measurement by dual-photon absorptiometry. Am J Clin Nutr 1990; 52:214-8.

Santana Porbén S. Metabolismo tisular de los sustratos. En: Manual de Nutrición Enteral y Parenteral [Editores: Arenas Moya D, Anaya Prado R]. Editorial McGraw-Hill Interamericana. Ciudad México: 2012.

Kern M, Wells JA, Stephens JM, Elton CW, Friedman JE, Tapscott EB; et al. Insulin responsiveness in skeletal muscle is determined by glucose transporter (Glut4) protein level. Biochem J 1990; 270:397-400.

Zorzano A, Palacin M, Guma A. Mechanisms regulating GLUT4 glucose transporter expression and glucose transport in skeletal muscle. Acta Physiol Scand 2005;183:43-58.

Evans WJ, Lexell J. Human aging, muscle mass, and fiber type composition. J Gerontol Ser A Biol Sci Med Sci 1995; 50:11-16.

Goodpaster BH, Park SW, Harris TB, Kritchevsky SB, Nevitt M, Schwartz AV; et al. The loss of skeletal muscle strength, mass, and quality in older adults: The Health, Aging and Body Composition Study. J Gerontol Ser A Biol Sci Med Sci 2006;61:1059-64.

Visser M, Kritchevsky SB, Goodpaster BH, Newman AB, Nevitt M, Stamm E, Harris TB. Leg muscle mass and composition in relation to lower extremity performance in men and women aged 70 to 79: The Health, Aging and Body Composition Study. J Am Geriatr Soc 2002;50:897-904.

Frontera WR, Hughes VA, Lutz KJ, Evans WJ. A cross-sectional study of muscle strength and mass in 45-to 78-yr-old men and women. J Appl Physiol 1991;71:644-50.

Larsson L, Grimby G, Karlsson J. Muscle strength and speed of movement in relation to age and muscle morphology. J Appl Physiol 1979;46: 451-6.

Hairi NN, Cumming RG, Naganathan V, Handelsman DJ, Le Couteur DG, Creasey H; et al. Loss of muscle strength, mass (sarcopenia), and quality (specific force) and its relationship with functional limitation and physical disability: The Concord Health and Ageing in Men Project. J Am Geriatr Soc 2010;58:2055-62.

Newman AB, Kupelian V, Visser M, Simonsick EM, Goodpaster BH, Kritchevsky SB; et al. Strength, but not muscle mass, is associated with mortality in the health, aging and body composition study cohort. J Gerontol Ser A Biol Sci Med Sci 2006;61:72-7.

Schiaffino S, Dyar KA, Ciciliot S, Blaauw B, Sandri M. Mechanisms regulating skeletal muscle growth and atrophy. FEBS J 2013;280:4294-314.

Florini JR. Hormonal control of muscle growth. Muscle Nerve 1987;10:577-98.

Herbst KL, Bhasin S. Testosterone action on skeletal muscle. Cur Op Clin Nutr Metab Care 2004;7:271-7.

Aizawa K, Iemitsu M, Maeda S, Jesmin S, Otsuki T, Mowa CN; et al. Expression of steroidogenic enzymes and synthesis of sex steroid hormones from DHEA in skeletal muscle of rats. Am J Physiol Endocrinol Metab 2007;292:E577-E584.

Fryburg DA, Gelfand RA, Barrett EJ. Growth hormone acutely stimulates forearm muscle protein synthesis in normal humans. Am J Physiol Endocrinol Metab 1991;260:E499-E504.

Duan C, Ren H, Gao S. Insulin-like growth factors (IGFs), IGF receptors, and IGF-binding proteins: Roles in skeletal muscle growth and differentiation. Gen Comp Endocrinol 2010;167:344-51.

Fryburg DA, Jahn LA, Hill SA, Oliveras DM, Barrett EJ. Insulin and insulin-like growth factor-I enhance human skeletal muscle protein anabolism during hyperaminoacidemia by different mechanisms. J Clin Invest 1995;96: 1722-9.

Mullur R, Liu YY, Brent GA. Thyroid hormone regulation of metabolism. Physiol Rev 2014;94:355-82.

Egan B, Zierath JR. Exercise metabolism and the molecular regulation of skeletal muscle adaptation. Cell Metab 2013;17: 162-84.

Zampieri S, Pietrangelo L, Loefler S, Fruhmann H, Vogelauer M, Burggraf S; et al. Lifelong physical exercise delays age-associated skeletal muscle decline. J Gerontol Ser A Biomed Sci Med Sci 2014;70:163-73.

Gianni P, Jan KJ, Douglas MJ, Stuart PM, Tarnopolsky MA. Oxidative stress and the mitochondrial theory of aging in human skeletal muscle. Exp Gerontol 2004;39:1391-400.

Srinivas-Shankar U, Roberts SA, Connolly MJ, O'Connell MD, Adams JE, Oldham JA, Wu FC. Effects of testosterone on muscle strength, physical function, body composition, and quality of life in intermediate-frail and frail elderly men: A randomized, double-blind, placebo-controlled study. J Clin Endocrinol Metab 2010;95:639-50.

Mühlberg W, Sieber C. Sarcopenia and frailty in geriatric patients: implications for training and prevention. Zeitsch Gerontol Geriatr 2004;37:2-8.

Cesari M, Landi F, Vellas B, Bernabei R, Marzetti E. Sarcopenia and physical frailty: Two sides of the same coin. Front Aging Neurosci 2014;6:192-192. Disponible en: https://www.frontiersin.org/articles/10.3389/fnagi.2014.00192. Fecha de última actualización: 4 de Enero del 2017.

Heymsfield SB, McManus C, Smith J, Stevens V, Nixon DW. Anthropometric measurement of muscle mass: Revised equations for calculating bone-free arm muscle area. Am J Clin Nutr 1982;36: 680-90.

Gurney JH, Jelliffe DB. Arm anthropometry in nutritional assessment: Nomogram for rapid calculation of muscle circumference and cross-sectional muscle and fat areas. Am J Nutr 1973;26:912-15.

Lee RC, Wang Z, Heo M, Ross R, Janssen I, Heymsfield SB. Total-body skeletal muscle mass: Development and cross-validation of anthropometric prediction models. Am J Clin Nutr 2000; 72:796-803.

Wang J, Thornton JC, Kolesnik S, Pierson RN. Anthropometry in body composition: An overview. Ann NY Acad Sci 2000;904:317-26.

Janssen I, Baumgartner RN, Ross R, Rosenberg IH, Roubenoff R. Skeletal muscle cutpoints associated with elevated physical disability risk in older men and women. Am J Epidemiol 2004; 159:413-21.

Heymsfield SB, Arteaga C, McManus C, Smith J, Moffitt S. Measurement of muscle mass in humans: Validity of the 24-hour urinary creatinine method. Am J Clin Nutr 1983;37:478-94.

Walser M. Creatinine excretion as a measure of protein nutrition in adults of varying age. JPEN J Parenter Enter Nutr 1987;11(Suppl):S73-S78.

Tzankoff SP, Norris AH. Effect of muscle-mass decrease on age. J Appl Physiol 1977;43:1001-6.

Bataille IB, Mesa BB, González JRS, Porbén SS. Sobre la excreción urinaria de creatinina en la tercera edad. RCAN Rev Cubana Aliment Nutr 2015;25(1 Supl):S102-S111.

Bistrian BR, Blackburn GL, Sherman M, Scrimshaw NS. Therapeutic index of nutritional depletion in hospitalized patients. Surg Gynecol Obstetr 1975; 141:512-6.

Janssen I, Heymsfield SB, Baumgartner RN, Ross R. Estimation of skeletal muscle mass by bioelectrical impedance analysis. J Appl Physiol 2000;89:465-71.

Pillen S, van Keimpema M, Nievelstein RA, Verrips A, van Kruijsbergen-Raijmann W, Zwarts MJ. Skeletal muscle ultrasonography: Visual versus quantitative evaluation. Ultrasound Med Biol 2006;32:1315-21.

Selberg O, Burchert W, Graubner G, Wenner C, Ehrenheim C, Muller MJ. Determination of anatomical skeletal muscle mass by whole body nuclear magnetic resonance. Basic Life Sci 1993;60:95–7.

Heymsfield SB, Noel R. Radiographic analysis of body composition by computerized axial tomography. Nutr Cancer 1981;17:161-72.

Heymsfield SB, Smith R, Aulet M, Bensen B, Lichtman S, Wang J, Pierson Jr RN. Appendicular skeletal muscle mass: Measurement by dual-photon absorptiometry. Am J Clin Nutr 1990; 52:214-8.

Miyatani M, Kanehisa H, Ito M, Kawakami Y, Fukunaga T. The accuracy of volume estimates using ultrasound muscle thickness measurements in different muscle groups. Eur J Appl Physiol 2004;91:264-72.

Flynn MA, Nolph GB, Baker AS, Martin WM, Krause G. Total body potassium in aging humans: A longitudinal study. Am J Clin Nutr 1989;50:713-7.

Wielopolski L, Ramirez LM, Gallagher D, Heymsfield SB, Wang Z. Measuring partial body potassium in the arm versus total body potassium. J Appl Physiol 2006;101:945-9.

Edwards RHT, Young A, Hosking GP, Jones DA. Human skeletal muscle function: Description of tests and normal values. Clin Sci 1977;52:283-90.

Luna-Heredia E, Martín-Peña G, Ruiz-Galiana J. Handgrip dynamometry in healthy adults. Clin Nutr 2005;24:250-8.

Norman K, Stobäus N, Gonzalez MC, Schulzke JD, Pirlich M. Hand grip strength: Outcome predictor and marker of nutritional status. Clin Nutr 2011;30: 135-42.

González-Izal M, Malanda A, Gorostiaga E, Izquierdo M. Electromyographic models to assess muscle fatigue. J Electromyo Kinesiol 2012;22:501-12.

Reid KF, Fielding RA. Skeletal muscle power: A critical determinant of physical functioning in older adults. Exerc Sport Sci Rev 2012;40:4-12.

Sayers SP, Guralnik JM, Thombs LA, Fielding RA. Effect of leg muscle contraction velocity on functional performance in older men and women. J Am Geriatr Soc 2005;53:467-71.

Roubenoff R. The pathophysiology of wasting in the elderly. J Nutr 1999;129(1 Suppl):S256-S259.

Argilés JM, Busquets SM, López Soriano FJ, Figueras M. Fisiología de la sarcopenia. Similitudes y diferencias con la caquexia neoplásica. Nutrición Hospitalaria [España] 2006;21(Supl 3): S38-S45.

Fearon K, Strasser F, Anker SD, Bosaeus I, Bruera E, Fainsinger RL; et al. Definition and classification of cancer cachexia: An international consensus. The Lancet Oncol 2011;12:489-95.

Evans WJ, Morley JE, Argilés J, Bales C, Baracos V, Guttridge D; et al. Cachexia: A new definition. Clin Nutr 2008;27:793-9.

Aagaard P, Suetta C, Caserotti P, Magnusson SP, Kjær M. Role of the nervous system in sarcopenia and muscle atrophy with aging: Strength training as a countermeasure. Scand J Med Sci Sports 2010;20:49-64.

Lexell J. Evidence for nervous system degeneration with advancing age. J Nutr 1997;127(5 Suppl):S1011-S1013.

Beaudart C, Reginster JY, Slomian J, Buckinx F, Dardenne N, Quabron A; et al. Estimation of sarcopenia prevalence using various assessment tools. Exp Gerontol 2015;61:31-7.

Pagotto V, Silveira EA. Methods, diagnostic criteria, cutoff points, and prevalence of sarcopenia among older people. Scient World J 2014;231312-231312. Disponible en: https://www.hindawi.com/journals/tswj/2014/231312/abs/. Fecha de última visita: 6 de Febrero del 2017.

Melton III LJ, Khosla S, Crowson CS, O'Connor MK, O'Fallon WM, Riggs BL. Epidemiology of sarcopenia. J Am Geriatr Soc 2000;48:625-30.

Iannuzzi-Sucich M, Prestwood KM, Kenny AM. Prevalence of sarcopenia and predictors of skeletal muscle mass in healthy, older men and women. J Gerontol Ser A Biol Sci Med Sci 2002; 57:M772-M777.

Toran FM, Culla A, Navarro-Gonzalez M, Navarro-Lopez M, Sacanella E, Torres B, Lopez-Soto A. Prevalence of sarcopenia in healthy community-dwelling elderly in an urban area of Barcelona (Spain). J Nutr Health Aging 2012;16:184-7.

Arango-Lopera VE, Arroyo P, Gutiérrez-Robledo LM, Pérez-Zepeda MU. Prevalence of sarcopenia in Mexico City. Eur Geriatr Med 2012;3:157-60.

Lin CC, Lin WY, Meng NH, Li CI, Liu CS, Lin CH; et al. Sarcopenia prevalence and associated factors in an elderly taiwanese metropolitan population. J Am Geriatr Soc 2013;61:459-62.

Barbosa‐Silva TG, Bielemann RM, Gonzalez MC, Menezes AMB. Prevalence of sarcopenia among community‐dwelling elderly of a medium‐sized South American city: Results of the COMO VAI? Study. J Cachexia Sarcopenia Muscle 2016;7: 136-43.

Janssen I, Shepard DS, Katzmarzyk PT, Roubenoff R. The healthcare costs of sarcopenia in the United States. J Am Geriatr Soc 2004;52:80-5.

Malafarina V, Úriz-Otano F, Iniesta R, Gil-Guerrero L. Sarcopenia in the elderly: Diagnosis, physiopathology and treatment. Maturitas 2012;71:109-14.

Beasley JM, Shikany JM, Thomson CA. The role of dietary protein intake in the prevention of sarcopenia of aging. Nutr Clin Pract 2013;28:684-90.

Jiménez JB, Lluch GL, Martínez IS, Muro-Jiménez A, Bies ER, Navas P. Sarcopenia: Implications of physical exercise in its pathophysiology, prevention and treatment. Rev Andaluza Med Deporte 2011;4:158-66. Disponible en: http://www.redalyc.org/html/3233/323327668005/. Fecha de última visita: 7 de Febrero del 2017.

Denison HJ, Cooper C, Sayer AA, Robinson SM. Prevention and optimal management of sarcopenia: A review of combined exercise and nutrition interventions to improve muscle outcomes in older people. Clin Intervent Aging 2015;10:859-66.

Beaudart C, Dawson A, Shaw SC, Harvey NC, Kanis JA, Binkley N; et al. Nutrition and physical activity in the prevention and treatment of sarcopenia: Systematic review. Osteopor Int 2017; 28:1817-33.

Lanza IR, Short DK, Short KR, Raghavakaimal S, Basu R, Joyner MJ; et al. Endurance exercise as a countermeasure for aging. Diabetes, 2008;57:2933-42.

Braith RW, Graves JE, Pollock ML, Leggett SL, Carpenter DM, Colvin AB. Comparison of 2 vs. 3 days/week of variable resistance training during 10- and 18-week programs. Int J Sports Med 1989;10:450-4.

Bischoff‐Ferrari HA, Borchers M, Gudat F, Dürmüller U, Stähelin HB, Dick W. Vitamin D receptor expression in human muscle tissue decreases with age. J Bone Mineral Res 2004;19:265-9.

Scott D, Blizzard L, Fell J, Ding C, Winzenberg T, Jones G. A prospective study of the associations between 25‐hydroxy‐vitamin D, sarcopenia progression and physical activity in older adults. Clin Endocrinol 2010;73:581-7.

Bunout D, Barrera G, Leiva L, Gattas V, de la Maza MP, Avendaño M, Hirsch S. Effects of vitamin D supplementation and exercise training on physical performance in Chilean vitamin D deficient elderly subjects. Exp Gerontol 2006;41:746-52.

Cherniack EP. Ergogenic dietary aids for the elderly. Nutrition 2012;28:225-9.

Katsanos CS, Chinkes DL, Paddon-Jones D, Zhang XJ, Aarsland A, Wolfe RR. Whey protein ingestion in elderly persons results in greater muscle protein accrual than ingestion of its constituent essential amino acid content. Nutr Res 2008;28:651-8.

Pennings B, Boirie Y, Senden JM, Gijsen AP, Kuipers H, van Loon LJ. Whey protein stimulates postprandial muscle protein accretion more effectively than do casein and casein hydrolysate in older men. Am J Clin Nutr 2011;93:997-1005.

Devries MC, Phillips SM. Creatine supplementation during resistance training in older adults- A meta-analysis. Med Sci Sports Exercise 2014;46:1194-1203.

Brose A, Parise G, Tarnopolsky MA. Creatine supplementation enhances isometric strength and body composition improvements following strength exercise training in older adults. J Gerontol Ser A Biol Sci Med Sci 2003;58:B11-B19.

Lugaresi R, Leme M, Murai IH, Roschel H, Sapienza MT, Lancha AJ, Gualano B. Does long-term creatine supplementation impair kidney function in resistance-trained individuals consuming a high-protein diet? J Int Soc Sports Nutr 2013;10:26-26. Disponible en: https://jissn.biomedcentral.com/articles/10.1186/1550-2783-10-26. Fecha de última visita: 15 de Marzo del 2017.

Yoshizumi WM, Tsourounis C. Effects of creatine supplementation on renal function. J Herbal Pharmacother 2004;4: 1-7.

Giovannini S, Marzetti E, Borst SE, Leeuwenburgh C. Modulation of GH/IGF-1 axis: Potential strategies to counteract sarcopenia in older adults. Mech Ageing Dev 2008;129:593-601.

Bhasin S. Testosterone supplementation and aging-associated sarcopenia. En: Endocrine aspects of successful aging: Genes, hormones and lifestyles. Springer Berlin. Heidelberg: 2004. pp. 175-190.

Gruenewald DA, Matsumoto AM. Testosterone supplementation therapy for older men: Potential benefits and risks. J Am Geriatr Soc 2003;51:101-15.

Dayal M, Sammel MD, Zhao J, Hummel AC, Vandenbourne K, Barnhart KT. Supplementation with DHEA: Effect on muscle size, strength, quality of life, and lipids. J Women's Health 2005;14: 391-400.

Sumukadas D, Witham MD, Struthers AD, McMurdo ME. ACE inhibitors as a therapy for sarcopenia- Evidence and possible mechanisms. J Nutr Health Aging 2008;12:480-5.

Zhou LS, Xu LJ, Wang XQ, Huang YH, Xiao Q. Effect of angiotensin-converting enzyme inhibitors on physical function in elderly subjects: A systematic review and meta-analysis. Drugs Aging 2015;32:727-35

Enlaces refback

  • No hay ningún enlace refback.