Inocuidad alimentaria versus residuos de medicamentos de uso veterinario: Un acercamiento a la panorámica actual

Dainelys Cantero Barroso, William Brown Vega, Milagros González Álvarez, Ivette Fernández Triana, Arístides Camilo Valdez González

Texto completo:

PDF

Resumen

Un alimento es inocuo y seguro si está libre de sustancias que puedan provocar un daño a la salud del consumidor a cualquier nivel de exposición. En la industria agropecuaria se utilizan diferentes sustancias como pesticidas, maduradores, promotoras del crecimiento, o medicamentos (entre otras), que le son administrados a frutas, vegetales y animales de cría destinados al consumo humano, con el fin de lograr mejores ganancias para los productos. Si bien este propósito se ha logrado, también no deja de preocupar que el uso de estas sustancias provoque efectos desfavorables mediante la presencia en los alimentos de residuos que generen daños a la salud. Este trabajo reseña la afectación de la inocuidad y la seguridad alimentaria que puede ser provocada por residuos de medicamentos de uso veterinario en alimentos de origen animal, las metodologías analíticas para su detección, y las normativas vigentes en Cuba para el control de la presencia de tales residuos. Con tal finalidad, se revisaron los artículos impresos en revistas especializadas seriadas, y los contenidos digitales hospedados en redes informativas. A pesar del empeño de las instituciones internacionales y nacionales para erradicar el uso irracional de fármacos en las diferentes líneas de crías para interés del sector agroalimentario, los residuos de los medicamentos de uso veterinario persisten en cantidades tóxicos en alimentos de consumo elevado como el pollo, el huevo, las carnes y derivados, el pescado, la miel, y la leche. El impacto de la presencia de estos residuos no debería pasarse por alto.

Palabras clave

Inocuidad; Seguridad; Alimentos; Residuos de medicamentos

Referencias

Käferstein FK, Motarjemi Y, Moy GG, Quevado F. Food safety: A worldwide public issue. En: International Food Safety Handbook. Routledge. New York: 2019. pp 1-20.

Mandal R, Shi Y, Singh A, Yada RY, Pratap-Singh A. Food safety and preservation. Academic Press. Elsevier Ltd. Amsterdam [The Netherlands]: 2020. Pp 467-479.

Hammoudi A, Hoffmann R, Surry Y. Food safety standards and agri-food supply chains: An introductory overview. Eur Rev Agric Econom 2009; 36:469-78.

Food and Agriculture Organization of the United Nations. Food safety risk management. Evidence-informed policies and decisions considering multiple factors. FAO guidance materials. Rome: 2017. Disponible en: http://www.fao.org/3/i8240en/I8240EN.pdf. Fecha de última visita: 2 Octubre del 2020.

Martin W. Agricultural trade and food security. Report number 1744. Policy Center for the New South. Rome: 2017. Disponible en: https://ideas.repec.org/p/ocp/ppaper/pb-1744.html. Fecha de última visita: 2 Octubre del 2020.

Chassy BM. Food safety risks and consumer health. New Biotechnol 2010;27(5):534-44. Disponible en: http://doi:10.1016/j.nbt.2010.05.018. Fecha de última visita: 2 Octubre del 2020.

Vågsholm I, Arzoomand NS, Boqvist S. Food security, safety, and sustainability- Getting the trade-offs right. Front Sustainable Food Syst 2020;4:16. Disponible en: https://www.frontiersin.org/articles/10.3389/fsufs.2020.00016/full. Fecha de última visita: 2 Octubre del 2020.

Rojas AC. A global public good: The linkage between veterinary medicine and the sanitary management of food hygiene. Am J Industr Business Manag 2013;3:507-13.

Bratu I, Georgescu C. Protection and food safety. The management of contamination incidence in food processing sectors. Calitatea 2014;15: 100-2.

Focker M, van der Fels-Klerx HJ. Economics applied to food safety. Curr Op Food Sci 2020;36:18-23. Disponible en: https://doi.org/10.1016/j.cofs.2020.10.018. Fecha de última visita: 18 de Diciembre del 2020.

Berners-Lee M, Kennelly C, Watson R, Hewitt CN. Current global food production is sufficient to meet human nutritional needs in 2050 provided there is radical societal adaptation. Elem Sci Anth 2018;6(1):0-0. Disponible en: https://online.ucpress.edu/elementa/article-abstract/doi/10.1525/elementa.310/112838. Fecha de última visita: 8 de Octubre del 2020.

Schneider UA, Havlík P, Schmid E, Valin H, Mosnier A, Obersteiner M; et al. Impacts of population growth, economic development, and technical change on global food production and consumption. Agricultural Systems 2011;104:204-21.

Garcia SN, Osburn BI, Cullor JS. A one health perspective on dairy production and dairy food safety. One Health 2019;7:100086. Disponible en: http://doi:10.1016/j.onehlt.2019.100086. Fecha de última visita: 8 de Octubre del 2020.

Barkema HW, von Keyserlingk MA, Kastelic JP, Lam TJGM, Luby C, Roy JP; et al. Changes in the dairy industry affecting dairy cattle health and welfare [Invited review]. J Dairy Sci 2015;98:7426-45.

Moreno L, Lanusse C. Specific veterinary drug residues of concern in meat production. En: New aspects of meat quality. Woodhead Publishing. Chicago: 2017. pp 605-627.

Maron DF, Smith TJ, Nachman KE. Restrictions on antimicrobial use in food animal production: An international regulatory and economic survey. Globalization Health 2013;9:1-11.

Bártíková H, Podlipná R, Skálová L. Veterinary drugs in the environment and their toxicity to plants. Chemosphere 2016;144:2290-301.

Ronquillo MG, Hernandez JCA. Antibiotic and synthetic growth promoters in animal diets: Review of impact and analytical methods. Food Control 2017;72:255-67.

Avello Oliver E, Silveira Prado EA, Peña Rodríguez FI, Camacho Escandón MC, Arce González MÁ. Fármaco-vigilancia con especial referencia a la situación en Cuba. Parte I. REDVET Rev Electr Vet 2009;10(4):1-20. Disponible en: https://www.redalyc.org/pdf/636/63611961021.pdf. Fecha de última visita: 8 de Octubre del 2020.

Avello Oliver E, Silveira Prado EA, Peña Rodríguez FI, Camacho Escandón MC, Arce González MÁ. Fármaco-vigilancia con especial referencia a la situación en Cuba. Parte II. REDVET Rev Electr Vet 2009;10(4):1-30. Disponible en: https://www.redalyc.org/pdf/636/63611961022.pdf. Fecha de última visita: 8 de Octubre del 2020.

Hernández-Rodríguez R, Armenteros-Amaya M, Silvera-Segura K. Caracterización de la cadena de producción láctea en cuatro provincias de Cuba. Generalidades y descripción del contexto externo (I). Rev Salud Animal 2020;42(1):0-0. Disponible en: http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S0253-570X2020000100003. Fecha de última visita: 8 de Octubre del 2020.

Armenteros-Amaya M, Hernández-Rodríguez R, Silvera-Segura K. Caracterización integral de la cadena de producción láctea en cuatro provincias de Cuba. Factores intrínsecos y aprendizajes del estudio (II). Rev Salud Animal 2020;42(3):0-0. Disponible en: http://scielo.sld.cu/scielo.php?pid=S0253-570X2020000300004&script=sci_arttext&tlng=en. Fecha de última visita: 9 de Octubre del 2020.

Escobar A, Faure R, Sosa D, Betancourt A, Hernández D. Aplicación del HPLC en el establecimiento del período de latencia de la oxitetraciclina en músculo de camarón (Litopenaeus vannamei) en un sistema de producción semi-intensivo en Cuba. Rev Salud Animal 2010;32:97-105.

Martínez-Vasallo A, Ribot-Enríquez A, Villoch-Cambas A, Montes de Oca N, Remón-Díaz D, Ponce-Ceballo P. Calidad e inocuidad de la leche cruda en las condiciones actuales de Cuba. Rev Salud Animal 2017;39:51-61.

Hernández-Barrera JC, Merchán MA, Prada-Quiroga CF. Impacto del uso de antimicrobianos en medicina veterinaria. Ciencia Agricultura 2017;14;27-38.

Ramos-Alvariño C. Comportamiento de los indicadores sanitarios y ecotoxicológicos de las aguas residuales con trazas de medicamentos. Rev Cubana Química 2013;25:180-205.

Kivits T, Broers HP, Beeltje H, Van Vliet M, Griffioen J. Presence and fate of veterinary antibiotics in age-dated groundwater in areas with intensive livestock farming. Environmental Pollution 2018;241:988-98.

Fondo de Naciones Unidas para la Infancia. Estado mundial de la infancia 2019. Niños, alimentos y nutrición. Crecer bien en un mundo en transformación. UNICEF. Geneva: 2020. Disponible en: https://www.unicef.org/es/informes/estado-mundial-de-la-infancia-2019. Fecha de última visita:11 de Octubre del 2020.

Fondo de Naciones Unidas para la Agricultura y la Alimentación. El estado de la seguridad alimentaria y la nutrición en el mundo 2020. Transformación de los sistemas alimentarios para que promuevan dietas asequibles y saludables. FAO. Geneva: 2020. Disponible en: http://www.fao.org/publications/sofi/2020/es/. Fecha de última visita: 11 de Octubre del 2020.

Amadori M, Zanotti C. Immunoprophylaxis in intensive farming systems: The way forward. Vet Immunol Immunopathol 2016;181:2-9.

Teillant A, Brower CH, Laxminarayan R. Economics of antibiotic growth promoters in livestock. Annu Rev Resour Econ 2015;7:349-74.

Reig M, Toldrá F. Growth promoters. En: Handbook of muscle foods analysis. CRC Press. Londres: 2008. pp. 857-874.

Dibner JJ, Richards JD. Antibiotic growth promoters in agriculture: History and mode of action. Poult Sci 2005;84:634-43.

Stephany RW. Hormonal growth promoting agents in food producing animals. En: Doping in sports: Biochemical principles, effects and analysis. Springer. New York: 2010. Pp 355-367.

Fajardo-Zapata ÁL, Méndez-Casallas FJ, Molina LH. Residuos de fármacos anabolizantes en carnes destinadas al consumo humano. Universitas Scientiarum 2011;16:77-91.

Niewold TA. The nonantibiotic anti-inflammatory effect of antimicrobial growth promoters, the real mode of action? A hypothesis. Poult Sci 2007;86:605-9.

Hao H, Cheng G, Iqbal Z, Ai X, Hussain HI, Huang L; et al. Benefits and risks of antimicrobial use in food-producing animals. Front Microbiol 2014;5:288. Disponible en: http://doi:10.3389/fmicb.2014.00288. Fecha de última visita: 19 de Octubre del 2020.

Lekagul A, Tangcharoensathien V, Yeung S. The use of antimicrobials in global pig production: A systematic review of methods for quantification. Prev Vet Med 2018;160:85-98. Disponible en: http://doi:10.1016/j.prevetmed.2018.09.016. Fecha de última visita: 19 de Octubre del 2020.

Shore L, Wershaw R. Organic compounds used in animal husbandry. En: Hormones and pharmaceuticals generated by concentrated animal feeding operations. Springer. New York NY: 2009. pp 115-123.

Beyene T. Veterinary drug residues in food-animal products: Its risk factors and potential effects on public health. J Vet Sci Technol 2016;7:1-7.

Hoelzer K, Wong N, Thomas J, Talkington K, Jungman E, Coukell A. Antimicrobial drug use in food-producing animals and associated human health risks: What, and how strong, is the evidence? BMC Vet Res 2017;13:1-38.

Ünüvar S. Microbial foodborne diseases. En: Foodborne diseases. Academic Press. Londres: 2018. Pp 1-31.

Dhama K, Rajagunalan S, Chakraborty S, Verma AK, Kumar A, Tiwari R, Kapoor S. Food-borne pathogens of animal origin-diagnosis, prevention, control and their zoonotic significance: a review. PJBS Pak J Biol Sci 2013;16:1076-85.

Falowo AB, Akimoladun OF. Veterinary drug residues in meat and meat products: Occurrence, detection and implications. En: Veterinary medicine and pharmaceuticals. IntechOpen. Zagreb: 2019. Disponible en: http://doi:10.5772/intechopen.83616. Fecha de última visita: 19 de Octubre del 2020.

Kyuchukova R. Antibiotic residues and human health hazard-review. Bulgarian J Agri Sci 2020;26:664-8.

Palma E, Tilocca B, Roncada P. Antimicrobial resistance in veterinary medicine: An overview. Int J Mol Sci 2020;21(6):1914. Disponible en: http://doi:10.3390/ijms21061914. Fecha de última visita: 19 de Octubre del 2020.

Isidori M, Lavorgna M, Nardelli A, Pascarella L, Parrella A. Toxic and genotoxic evaluation of six antibiotics on non-target organisms. Sci Total Environm 2005;346:87-98.

Halper J. Growth factors as active participants in carcinogenesis: A perspective. Veterinary Pathology 2010;47:77-97.

Woodward KN. Adverse reactions in humans following exposure to veterinary drugs. En: Veterinary pharmacovigilance: Adverse reactions to veterinary medicinal products [Editor: Woodward KN]. Blackwell Publishing Ltd. London: 2009. pp 475-515. Disponible en: https://doi.org/10.1002/9781444322958.ch20. Fecha de última visita: 20 de Octubre del 2020.

Siroka Z, Svobodova Z. The toxicity and adverse effects of selected drugs in animals- Overview. Pol J Vet Sci 2013;16(1):181-91. Disponible en: http://doi:10.2478/pjvs-2013-0027. Fecha de última visita: 20 de Octubre del 2020.

Dugassa J, Shukuri N. Review on antibiotic resistance and its mechanism of development. J Health Med Nurs 2017;1:1-17.

Devirgiliis C, Barile S, Perozzi G. Antibiotic resistance determinants in the interplay between food and gut microbiota. Genes Nutrition 2011;6: 275-84.

Schjørring S, Krogfelt KA. Assessment of bacterial antibiotic resistance transfer in the gut. Int J Microbiol 2011;2011:312956. Disponible en: http://doi:10.1155/2011/312956. Fecha de última visita: 19 de Octubre del 2020.

Odore R, De Marco M, Gasco L, Rotolo L, Meucci V, Palatucci AT; et al. Cytotoxic effects of oxytetracycline residues in the bones of broiler chickens following therapeutic oral administration of a water formulation. Poult Sci 2015;94:1979-85.

Freitas DM, Silva HM. Aplasia medular correlacionada ao uso do Cloranfenicol. Rev Cereus 2016;8:127-44. Disponible en: http://www.ojs.unirg.edu.br/index.php/1/article/view/1065. Fecha de última visita: 19 de Octubre del 2020.

Vardakas KZ, Kalimeris GD, Triarides NA, Falagas ME. An update on adverse drug reactions related to β-lactam antibiotics. Expert Op Drug Safe 2018;17:499-508.

Hiraku Y, Sekine A, Nabeshi H, Midorikawa K, Murata M, Kumagai Y, Kawanishi S. Mechanism of carcinogenesis induced by a veterinary antimicrobial drug, nitrofurazone, via oxidative DNA damage and cell proliferation. Cancer Letters 2004;215:141-50.

Strong L. Avermectins: A review of their impact on insects of cattle dung. Bull Entomol Res 1992;82:265-74.

Rabinowitz P, Conti L. Links among human health, animal health, and ecosystem health. Annu Rev Public Health 2013;34:189-204.

Fernandez C, Andrés MS, Porcel MA, Rodriguez C, Alonso A, Tarazona JV. Pharmacokinetic profile of ivermectin in cattle dung excretion, and its associated environmental hazard. Soil Sediment Contamin 2009;18:564-75.

Pecenka JR, Lundgren JG. Effects of herd management and the use of ivermectin on dung arthropod communities in grasslands. Basic Appl Ecol 2019;40:19-29.

Das SK. Mode of action of pesticides and the novel trends- A critical review. Int Res J Agric Sci Soil Sci 2013;3: 393-401.

Pleadin J, Vulić A, Perši N, Vahčić N. Clenbuterol residues in pig muscle after repeat administration in a growth-promoting dose. Meat Sciences 2010;86:733-7.

Pena BS, Uribe A, Córdova-Izquierdo A, Michel AM. Clenbuterol residues in bovine feed and meat. Res J Biol Sci 2008;3:1444-5.

Kuiper HA, Noordam MY, van Dooren-Flipsen MMH, Schilt R, Roos AH. Illegal use of β-adrenergic agonists: European Community. J Anim Sci 1998;76:195-207.

Valladares-Carranza B, Velázquez-Ordoñez V, Zamora-Espinosa JL, Aviles-Martínez JA, Zaragoza-Bastida A, Posadas-Sánchez MA. Implications of the use of clenbuterol hydrochloride in beef cattle. En: Nutritional strategies of animal feed additives. Nova Science Publishers Inc. New York: 2013. pp 185-196.

Knutsen HK, Alexander J, Barregård L, Bignami M, Brüschweiler B, Ceccatelli S; et al.; for the European Food Safety Agency Panel on Contaminants in the Food Chain (CONTAM). Risks for animal health related to the presence of zearalenone and its modified forms in feed. EFSA J;15(7):e04851. Disponible en: http://doi:10.2903/j.efsa.2017.4851. Fecha de última visita: 20 de Octubre del 2020.

Mlalila N, Mahika C, Kalombo L, Swai H, Hilonga A. Human food safety and environmental hazards associated with the use of methyltestosterone and other steroids in production of all-male tilapia. Environm Sci Pollut Res 2015;22:4922-31.

Zhao Y. Recombinant bovine somatotropin. En: IOP Conference Series: Earth and Environmental Science 2015;440(2):022034. IOP Publishing. Basel: 2015.

Fénichel P, Brucker-Davis F, Chevalier N. The history of Distilbène® (Diethylstilbestrol) told to grandchildren- The transgenerational effect. Annal d'Endocrinol 2015;76:253-9.

United States Food and Drug Administration. Certain estrogens for oral or parenteral use. Drugs for human use; drug efficacy study implementation. Fed Regist 1971;36(217):21537-8.

Althuis MD, Fergenbaum JH, Garcia-Closas M, Brinton LA, Madigan MP, Sherman ME. Etiology of hormone receptor–defined breast cancer: A systematic review of the literature. Cancer Epidemiol Prevent Biomarkers 2004;13:1558-68.

Raun AP, Preston RL. History of diethylstilbestrol use in cattle. J Anim Sci 2002;80:1-7.

Fischer WJ, Schilter B, Tritscher AM, Stadler RH. Contaminants of milk and dairy products: Contamination resulting from farm and dairy practices. Encyclopedia Dairy Sci 2011;2:887-97.

Das AK, Nanda PK, Das A, Biswas S. Hazards and safety issues of meat and meat products. En: Food safety and human health. Academic Press. Londres: 2019. pp 145-168.

Watkins RR, Bonomo RA. Overview: Global and local impact of antibiotic resistance. Infect Dis Clin North Am 2016;30:313-22.

Mouton JW, Ambrose PG, Canton R, Drusano GL, Harbarth S, MacGowan A; et al. Conserving antibiotics for the future: New ways to use old and new drugs from a pharmacokinetic and pharmacodynamic perspective. Drug Resistance Updates 2011;14:107-17.

Kostyanev T, Bonten MJM, O'Brien S, Steel H, Ross S, François B; et al. The Innovative Medicines Initiative's New Drugs for Bad Bugs programme: European public–private partnerships for the development of new strategies to tackle antibiotic resistance. J Antimicrobial Chemotherapy 2016;71:290-5.

MacLachlan DJ, Mueller U. A refined approach to estimate exposure for use in calculating the Maximum Residue Limit of veterinary drugs. Regulat Toxicol Pharmacol 2012;62:99-106.

Galli CL, Marinovich M, Lotti M. Is the acceptable daily intake as presently used an axiom or a dogma? Toxicol Letters 2008;180:93-9.

Tritscher A, Miyagishima K, Nishida C, Branca F. Ensuring food safety and nutrition security to protect consumer health: 50 years of the Codex Alimentarius Commission. Bull World Health Org 2013;91:468-468.

Fargnoli M, Lombardi M, Puri D, Casorri L, Masciarelli E, Mandić-Rajčević S, Colosio C. The safe use of pesticides: A risk assessment procedure for the enhancement of Occupational Health and Safety (OHS) management. Int J Environ Res Public Health 2019;16(3):310. Disponible en: http://doi:10.3390/ijerph16030310. Fecha de última visita: 20 de Octubre del 2020.

Joint FAO & WHO Expert Committee on Food Additives. Evaluation of certain veterinary drug residues in food: eighty-eighth report of the Joint FAO/WHO Expert Committee on Food Additives. World Health Organization. Geneva: 2020. Disponible en: https://apps.who.int/iris/bitstream/handle/10665/330821/9789241210324-eng.pdf. Fecha de última visita: 20 de Octubre del 2020.

Johnson R. The Federal Food Safety System: A primer. Washington DC: 2016. Disponible en: https://www.aglaw-assn.org/wp-content/uploads/2-AALA-2018-Federal-Food-Safety-System-CRS.pdf. Fecha de última visita: 20 de Octubre del 2020.

Hofer MP, Jakobsson C, Zafiropoulos N, Vamvakas S, Vetter T, Regnstrom J, Hemmings RJ. Impact of scientific advice from the European Medicines Agency. Nature Rev Drug Discover 2015;14:302-4.

Alemanno A. The European Food Safety Authority at five. Eur Food Feed L Rev 2008;3:2.

Angot JL, Orand JP. Role of the World Organisation for Animal Health (OIE) and of the veterinary services in food safety. En: First OIE Global Conference on evolving veterinary education for a safer world. Paris [France] 12-14 October 2009. OIE World Organisation for Animal Health. Paris [France]: 2011. pp. 137-149.

Zinsstag J, Schelling E, Crump L, Whittaker M, Tanner M, Stephen C. One Health: The theory and practice of integrated health approaches. Second Edition. Paris [Francia]: 2021.

European Commission. Directive 96/22/EC concerning the prohibition on the use in stock-farming of certain substances having a hormonal or thyrostatic action and of beta-agonists. Off J Eur Commun L 1996;125:3-9.

European Commission. Council Directive 2003/74/EC amending council directive 96/22/EC concerning the prohibition on the use in stock farming of certain substances having a hormonal or thyrostatic action and of beta-agonists. Off J Eur Commun L 2003;262:17-20.

European Commission. Council Directive 97/EC (2008) of the European Parliament and of the Council of 19 November 2008 amending Council Directive 96/22/EC concerning the prohibition on the use in stockfarming of certain substances having a hormonal or thyrostatic action and of beta-agonist. Off J Eur Commun L 2008;318:9-11.

European Comission. Council Directive 96/23/EC of 29 April 1996 on measures to monitor certain substances and residues thereof in live animals and animal products and repealing Directives 85/358/EEC and 86/469/EEC and Decisions 89/187/EEC and 91/664/EEC. Official Journal L 1996;125:0010-0032 issued on 23 May 1996.

La resistencia a los agentes antimicrobianos, un fenómeno global y el papel de los servicios sanitarios de la agricultura. Dirección de Sanidad Animal. MINAG Ministerio de la Agricultura. República de Cuba. La Habana: 2017. Disponible en: https://www.minag.gob.cu. Fecha de última visita: 21 de Octubre del 2020.

Resolución 881. Reglamento de Buenas Prácticas de Almacenamiento, Distribución y Expendio de Productos Veterinarios. MINAG Ministerio de la Agricultura. República de Cuba. La Habana: 2012. Disponible en: https://www.gacetaoficial.gob.cu/es/resolucion-881-de-2012-de-ministerio-de-la-agricultura. Fecha de última visita: 21 de Octubre del 2020.

NC 1097:2015. Buenas Prácticas de Uso de Productos Veterinarios. Oficina Nacional de Normalización. República de Cuba. La Habana: 2015.

NC 604:2021 (Sustituye a la NC 604:2012). Límites máximos de residuos (LMR) y recomendaciones sobre la gestión de riesgos (RGR) para residuos de medicamentos veterinarios en los alimentos. Oficina Nacional de Normalización. República de Cuba. La Habana: 2021.

NC 893:2012. Directrices para el diseño y la implementación de programas nacionales reglamentarios de aseguramiento de inocuidad alimentaria relacionados con el uso de medicamentos veterinarios en los animales destinados a la producción de alimentos. Oficina Nacional de Normalización. República de Cuba. La Habana: 2012.

Resolución número 47/2012. IMV Instituto de Medicina Veterinaria. MINAG Ministerio de la Agricultura. República de Cuba. La Habana: 2012.

Resolución número 3/2015. IMV Instituto de Medicina Veterinaria. MINAG Ministerio de la Agricultura. República de Cuba. La Habana: 2015.

Wang J, MacNeil JD, Kay JF. Chemical analysis of antibiotic residues in food. Volumen 38. John Wiley & Sons. New York: 2011.

El-Kholy H, Kemppainen BW. Liquid chromatographic method with ultraviolet absorbance detection for measurement of levamisole in chicken tissues, eggs and plasma. J Chromatography B 2003;796:371-7.

Zambrano PELR, Blanco JAE, Conte-Junior CA, de la Torre CAL. Determinación de residuos de antibióticos veterinarios en productos de origen animal mediante cromatografía líquida. Vigilância Sanitária em Debate: Sociedade Ciência Tecnologia 2018;6:122-36.

Yang S, Carlson K. Routine monitoring of antibiotics in water and wastewater with a radioimmunoassay technique. Water Res 2004;38:3155-66.

Mahmoudi R, Moosavy M, Norian R, Kazemi S, Nadari MRA, Mardani K. Detection of Oxytetracycline residues in honey samples using ELISA and HPLC methods from Iran. Pharmaceut Sci 2014;19:145-50.

Usui N, Ohara M, Ito M, Noda A, Ito Y, Hirayama N. Assessment of the acute toxicity of 16 veterinary drugs and a disinfectant to aquatic and soil organisms. Fundament Toxicol Sci 2019;6:333-40.

Kim JY, Kim SJ, Paeng KJ, Chung BC. Measurement of ketoprofen in horse urine using gas chromatography‐mass spectrometry. J Vet Pharmacol Therap 2001;24:315-9.

Malik AK, Blasco C, Picó Y. Liquid chromatography-mass spectrometry in food safety. J Chromatography A 2010;1217:4018-40.

Zhang Y, Huang X, Yuan D. Determination of benzimidazole anthelmintics in milk and honey by monolithic fiber-based solid-phase microextraction combined with high-performance liquid chromatography–diode array detection. Anal Bioanal Chem 2015;407:557-67.

Tao X, Jiang H, Yu X, Zhu J, Wang X, Wang Z; et al. Simultaneous determination of chloramphenicol, florfenicol and florfenicol amine in ham sausage with a hybrid chemiluminescent immunoassay. Food Addit Contaminants Part A 2013;30:804-12.

Tao X, Jiang H, Yu X, Zhu J, Wang X, Wang Z; et al. Development and validation of a chemiluminescent ELISA for simultaneous determination of florfenicol and its metabolite florfenicol amine in chicken muscle. Anal Method 2012;4:4083-90.

Mi T, Wang Z, Eremin SA, Shen J, Zhang S. Simultaneous determination of multiple (fluoro) quinolone antibiotics in food samples by a one-step fluorescence polarization immunoassay. J Agric Food Chem 2013;61:9347-55.

El-Mesery HS, Mao H, Abomohra AE. Applications of non-destructive technologies for agricultural and food products quality inspection. Sensors [Basel] 2019;19(4):846. Disponible en: http://doi:10.3390/s19040846. Fecha de última visita: 21 de Octubre del 2020.

Talero Pérez YV, Medina OJ, Rozo Núñez W. Técnicas analíticas contemporáneas para la identificación de residuos de sulfonamidas, quinolonas y cloranfenicol. Universitas Scientiarum 2014;19(1):11-28. Disponible en: http://doi:10.11144/Javeriana.SC19-1.taci. Fecha de última visita: 21 de Octubre del 2020.

Tian YF, Chen GH, Guo LH, Guo X, Mei XY. Methodology studies on detection of aminoglycoside residues. Food Anal Methods 2015;8:1842-57.

Navrátilová P. Screening methods used for the detection of veterinary drug residues in raw cow milk– A review. Czech J Food Sci 2008;26:393-401.

Sczesny S, Nau H, Hamscher G. Residue analysis of tetracyclines and their metabolites in eggs and in the environment by HPLC coupled with a microbiological assay and tandem mass spectrometry. J Agric Food Chem 2003;51:697-703.

Bolelli L, Bobrovová Z, Ferri E, Fini F, Menotta S, Scandurra S; et al. Bioluminescent bacteria assay of veterinary drugs in excreta of food-producing animals. J Pharmaceut Biomed Anal 2006;42:88-93.

Plan para la Seguridad Nutricional y la Educación Alimentaria en Cuba. Disponible en: http://agricultura.minag.gob.cu. Fecha de última visita: 16 de Noviembre del 2020.

Enlaces refback

  • No hay ningún enlace refback.




Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial 4.0 Internacional.